Convex Hull Obstacle-Aware Pedestrian Tracking and Target Detection in Theme Park Applications
Abstract
:1. Introduction
- We design a convex hull obstacle-aware pedestrian tracking and target detection system for theme park applications, to achieve obstacle avoidance when mobile robots and UAVs work together to build tracking barriers in situations having multiple obstacles set with irregular shapes, not fixed shapes.
- We formally define the research problem associated with mobile robots and UAVs with the aim of building as many convex hull obstacle-aware tracking barriers as possible for obstacle avoidance.
- Two different methods are proposed, with their applied strategies and varied settings, to solve problems through simulation, to compare performance by arbitrarily regularizing obstacles, and to find and rearrange routes in advance.
2. Related Works
3. Proposed Framework
3.1. System Configuration and Assumptions
- The proposed system is composed of mobile robots and UAVs as system components, where each component has different detection or communication ranges.
- Obstacles are not limited to squares but have various shapes.
- Several obstacles are not made by mobile robots and UAVs and obstacle-aware barriers are not made by placing them on top of obstacles.
- A convex hull obstacle-aware tracking barrier is created when the communication ranges of system components overlap with the obstacle.
3.2. Essential Terms, Problem Definition and Notations
4. Proposed Methods
4.1. Algorithm 1: Pre-Filled Convex Hull-Aware Construction
- Verify initial random locations of the system components S, including the mobile robots and UAVs, with their communication ranges r in theme park area T.
- A position of a convex hull obstacle in the whole area is grasped.
- Check the shape and area of the obstacle.
- The concave shape of the obstacle is arbitrarily filled in to form a square having the minimum area.
- The following procedures are iterated until a new convex hull obstacle-aware tracking barrier is not found.
- −
- Find a convex hull obstacle-aware tracking barrier consisting of a mobile robot and UAVs to satisfy the given detection accuracy q.
- −
- If a new convex hull obstacle-aware tracking barrier is sought, then, add the found barrier to the set of convex hull obstacle-aware tracking barriers H;
- Calculate the size of H;
- The number of convex hull obstacle-aware tracking barriers are returned as the final result.
Algorithm 1 Pre-Filled Convex Hull-Aware Construction Inputs: , Output: |
|
4.2. Algorithm 2: Pre-Drawn Virtual Lines Relocation
- Randomly locate a set of system components S covering the mobile robots and UAVs in the theme park region T.
- Confirm convex hull obstacles within T;
- A mobile robot is arbitrarily selected to draw all the virtual paths from the edge of the area to the diagonal edge, avoiding obstacles.
- After that, all the mobile robots and UAVs are rearranged on the drawn virtual path.
- The below steps are iterated until a new convex hull obstacle-aware tracking barrier is not built.
- −
- With virtual lines, seek a convex hull obstacle-aware tracking barrier consisting of a mobile robot and UAVs to meet the required detection accuracy q.
- −
- If a new convex hull obstacle-aware tracking barrier is found, add the found barrier to the set of convex hull obstacle-aware tracking barrier H;
- Calculate the size of H;
- The number of convex hull obstacle-aware tracking barriers created by relocation are returned as the final result.
Algorithm 2 Pre-Drawn-Virtual-Lines-Relocation Inputs: , Output: |
|
5. Results and Performance Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
UAVs | Unmanned Aerial Vehicles |
ConvexAwareTheme | convex hull obstacle-aware tracking barriers |
References
- Geraci, G.; García-Rodríguez, A.; Azari, M.M.; Lozano, A.; Mezzavilla, M.; Chatzinotas, S.; Chen, Y.; Rangan, S.; Renzo, M.D. What will the future of UAV cellular communications be? A flight from 5G to 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1304–1335. [Google Scholar] [CrossRef]
- Balkus, S.V.; Wang, H.; Cornet, B.D.; Mahabal, C.; Ngo, H.; Fang, H. A survey of collaborative machine learning using 5G vehicular communications. IEEE Commun. Surv. Tutor. 2023, 24, 1280–1303. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Kato, N.; Du, Y. Intelligent reflecting surface backscatter enabled multi-tier computing for 6G internet of things. IEEE J. Sel. Areas Commun. 2023, 41, 320–333. [Google Scholar] [CrossRef]
- Su, Y.; Gao, Z.; Du, X.; Guizani, M. User-centric base station clustering and resource allocation for cell-edge users in 6G ultra-dense networks. Future Gener. Comput. Syst. 2023, 141, 173–185. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.A.; Poor, H.V. 6G Internet of Things: A comprehensive survey. IEEE Internet Things J. 2022, 9, 359–383. [Google Scholar] [CrossRef]
- Abouaomar, A.; Taïk, A.; Filali, A.; Cherkaoui, S. Federated deep reinforcement learning for open RAN slicing in 6G networks. IEEE Internet Things J. 2023, 61, 126–132. [Google Scholar] [CrossRef]
- Taha, A.M.; Elabd, A. IoT for certified sustainability in smart buildings. IEEE Netw. 2023, 35, 241–247. [Google Scholar] [CrossRef]
- Xiu, H.; Gao, Z.; Liao, A.; Mei, Y.; Zheng, D.; Tan, S.; Renzo, M.D.; Hanzo, L. Joint activity detection and channel estimation for massive IoT access based on millimeter-wave/terahertz multi-panel massive MIMO. IEEE Trans. Veh. Technol. 2022, 72, 1349–1354. [Google Scholar] [CrossRef]
- Bugshan, N.; Khalil, I.; Rahman, M.S.; Atiquzzaman, M.; Yi, X.; Badsha, S. Toward trustworthy and privacy-preserving federated deep learning service framework for industrial internet of things. IEEE Trans. Ind. Inform. 2023, 19, 1535–1547. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, W.; Li, B.; Zhou, X.; Ning, Z.; Qiu, T.; Atiquzzaman, M. Entity and sociality trust-aware model for content distribution in social internet of vehicles. IEEE Trans. Veh. Technol. 2022, 71, 12511–12522. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Zanella, M.; Yang, W.; Bashir, A.K.; Fornaciari, W. Sema-IIoVT: Emergent semantic-based trustworthy information-centric fog system and testbed for intelligent internet of vehicles. IEEE Consum. Electron. Mag. 2023, 12, 70–79. [Google Scholar] [CrossRef]
- Hamdaoui, B.; Alkalbani, M.; Rayes, A.; Zorba, N. IoTShare: A blockchain-enabled IoT resource sharing on-demand protocol for smart city situation-awareness applications. IEEE Internet Things J. 2020, 7, 10548–10561. [Google Scholar] [CrossRef]
- Solmaz, G.; Turgut, D. Optimizing event coverage in theme parks. Wirel. Netw. 2014, 20, 1445–1459. [Google Scholar] [CrossRef]
- Solmaz, G.; Turgut, D. Pedestrian mobility in theme park disasters. IEEE Commun. Mag. 2015, 53, 172–177. [Google Scholar] [CrossRef]
- Filali, A.; Mlika, Z.; Cherkaoui, S.; Kobbane, A. Dynamic SDN-based radio access network slicing with deep reinforcement learning for URLLC and eMBB Services. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2174–2187. [Google Scholar] [CrossRef]
- Raja, G.; Senthivel, S.G.; Balaganesh, S.; Rajakumar, B.R.; Ravichandran, V.; Guizani, M. MLB-IoD: Multi Layered Blockchain Assisted 6G Internet of Drones Ecosystem. IEEE Trans. Veh. Technol. 2023, 72, 2511–2520. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Miridakis, N.I.; Michalas, A.; Skondras, E.; Vergados, D.J.; Vergados, D.V. Energy optimization in massive MIMO UAV-aided MEC-enabled vehicular networks. IEEE Access 2021, 9, 117388–117403. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Maliatsos, K.; Skoutas, D.N.; Vouyioukas, D.; Skianis, C. Secure UAV-aided mobile edge computing for IoT: A review. IEEE Access 2022, 10, 86353–86383. [Google Scholar] [CrossRef]
- Nomikos, N.; Michailidis, E.T.; Nomikos, N.; Trakadas, P.; Vouyioukas, D.; Karl, H.; Martrat, J.; Zahariadis, T.B.; Papadopoulos, K.; Voliotis, S. A UAV-based moving 5G RAN for massive connectivity of mobile users and IoT devices. Veh. Commun. 2020, 25, 100250. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Bithas, P.S.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. Outage probability analysis in multi-user FSO/RF and UAV-enabled MIMO communication networks. Phys. Commun. 2021, 49, 101475. [Google Scholar] [CrossRef]
- Bithas, P.S.; Nikolaidis, V.; Kanatas, A.G.; Karagiannidis, G.K. UAV-to-Ground Communications: Channel Modeling and UAV Selection. IEEE Trans. Commun. 2020, 68, 5135–5144. [Google Scholar] [CrossRef]
- Armeniakos, C.K.; Bithas, P.S.; Kanatas, A.G. Finite point processes in a truncated octahedron-based 3D UAV network. IEEE Trans. Veh. Technol. 2022, 71, 7230–7243. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, K.; Cao, J.; Lu, Y.; Fan, P.; Letaief, K.B. Average AoI minimization in UAV-assisted data collection with RF wireless power transfer: A deep reinforcement learning scheme. IEEE Internet Things J. 2022, 9, 5216–5228. [Google Scholar] [CrossRef]
- Hu, H.; Xiong, K.; Qu, G.; Ni, Q.; Fan, P.; Letaief, K.B. AoI-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks. IEEE Internet Things J. 2021, 8, 1211–1223. [Google Scholar] [CrossRef]
- Inthizami, N.S.; Ma’sum, M.A.; Alhamidi, M.R.; Gamal, A.; Ardhianto, R.; Kurnianingsih; Jatmiko, W. Flood video segmentation on remotely sensed UAV using improved efficient neural network. ICT Express 2022, 8, 347–351. [Google Scholar] [CrossRef]
- Garcia, A.J.; Aouto, A.; Lee, J.-M.; Kim, D.-S. CNN-32DC: An improved radar-based drone recognition system based on convolutional neural network. ICT Express 2022, 8, 606–610. [Google Scholar] [CrossRef]
- Morocho-Cayamcela, M.E.; Lim, W.; Maier, M. An optimal location strategy for multiple drone base stations in massive MIMO. ICT Express 2022, 8, 230–234. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Ansari, N. Joint wireless charging and data collection for UAV-enabled internet of things network. IEEE Internet Things J. 2022, 9, 23852–23859. [Google Scholar] [CrossRef]
- Hossain, M.A.; Hossain, A.R.; Ansari, N. Numerology-capable UAV-MEC for future generation massive IoT networks. IEEE Internet Things J. 2022, 9, 23860–23868. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.T.; Meng, D.; Dong, M.; Ota, K.; Wang, H. Multi-UAV cooperative localization for marine targets based on weighted subspace fitting in SAGIN environment. IEEE Internet Things J. 2022, 9, 5708–5718. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, K.; Zheng, S.; Niyato, D.; Luong, N.C. Trajectory design and power control for joint radar and communication enabled multi-UAV cooperative detection systems. IEEE Trans. Commun. 2023, 71, 158–172. [Google Scholar] [CrossRef]
- Wang, F.; Li, B.; Li, B. Quality-oriented federated learning on the fly. IEEE Netw. 2022, 36, 152–159. [Google Scholar] [CrossRef]
- Kim, H.; Ben-Othman, J.; Hwang, K.; Choi, B. Intelligent aerial-ground surveillance and epidemic prevention with discriminative public and private services. IEEE Netw. 2022, 36, 40–46. [Google Scholar] [CrossRef]
- Kim, H.; Ben-Othman, J.; Mokdad, L.; Son, J.; Li, C. Research challenges and security threats to AI-driven 5G virtual emotion applications using autonomous vehicles, drones, and smart devices. IEEE Netw. 2020, 34, 288–294. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Kim, H. Differential security barriers for virtual emotion detection in maritime transportation stations with cooperative mobile robots and UAVs. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2461–2471. [Google Scholar] [CrossRef]
- Zhao, M.; Adib, F.; Katabi, D. Emotion recognition using wireless signals. Commun. ACM 2018, 61, 91–100. [Google Scholar] [CrossRef]
- Taha, A.M.; Ali, N.A. Monitoring a crowd’s affective state: Status quo and future outlook. IEEE Commun. Mag. 2019, 57, 26–32. [Google Scholar] [CrossRef]
- Kumar, S.; Lai, T.H.; Posner, M.E.; Sinha, P. Maximizing the lifetime of a barrier of wireless sensors. IEEE Trans. Mob. Comput. 2010, 9, 1161–1172. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Cao, Q.; Qi, H.; Wang, Z.; Wang, Q. Achieving location error tolerant barrier coverage for wireless sensor networks. Comput. Netw. 2017, 112, 314–328. [Google Scholar] [CrossRef]
- Li, L.; Zhang, B.; Shen, X.; Zheng, J.; Yao, Z. A study on the weak barrier coverage problem in wireless sensor networks. Comput. Netw. 2011, 55, 711–721. [Google Scholar] [CrossRef]
- Malek, M.S.; Sadik, B.; Rahman, M.M. On balanced k-coverage in visual sensor networks. J. Netw. Comput. Appl. 2016, 72, 72–86. [Google Scholar] [CrossRef]
- Carrabs, F.; Cerulli, R.; D’Ambrosio, C.; Raiconi, A. A hybrid exact approach for maximizing lifetime in sensor networks with complete and partial coverage constraints. J. Netw. Comput. Appl. 2015, 58, 12–22. [Google Scholar] [CrossRef]
- Chen, A.; Zhu, Y.; Li, Z.; Lai, T.H.; Liu, C. Is one-way barrier coverage achievable using comprehensive sensors? Comput. Commun. 2015, 57, 100–114. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W. Coverage hole and boundary nodes detection in wireless sensor networks. J. Netw. Comput. Appl. 2015, 48, 819–827. [Google Scholar] [CrossRef]
- Vecchio, M.; Lopez-Valcarce, R. Improving area coverage of wireless sensor networks via controllable mobile nodes: A greedy approach. J. Netw. Comput. Appl. 2015, 48, 1–13. [Google Scholar] [CrossRef]
- Kim, H.; Ben-Othman, J. FAMU: Fault-tolerant mutual assisted virtual emotion barrier system using intelligent smart UAVs. IEEE Trans. Veh. Technol. 2021, 70, 10845–10852. [Google Scholar] [CrossRef]
- Kloder, S.; Hutchinson, S. Barrier coverage for variable bounded-range line-of sight guard. In Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 391–396. [Google Scholar]
- Bhattacharya, B.; Burmester, M.; Hu, Y.; Kranakis, E.; Shi, Q.; Wiese, A. Optimal movement of mobile sensors for barrier coverage of a planar region. Theor. Comput. Sci. 2009, 410, 5515–5528. [Google Scholar] [CrossRef]
- He, S.; Chen, J.; Li, X.; Shen, X.; Sun, Y. Cost-effective barrier coverage by mobile sensor networks. In Proceedings of the IEEE Annual International Conference on Computer Communications (INFOCOM), Orlando, FL, USA, 25–30 March 2012; pp. 819–827. [Google Scholar]
- Shen, J.; Wang, Z.; Wang, Z. Fault tolerant line-based barrier coverage formation in mobile wireless sensor networks. Int. J. Distrib. Sens. Netw. 2015. [Google Scholar] [CrossRef]
- Saipulla, A.; Liu, B.; Xing, G.; Fu, X.; Wang, J. Barrier coverage with sensors of limited mobility. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Chicago, IL, USA, 20–24 September 2010; pp. 201–210. [Google Scholar]
- Kong, L.; Liu, X.; Li, Z.; Wu, M. Automatic barrier coverage formation with mobile sensor networks. In Proceedings of the ACM IEEE International Conference on Communications (ICC), Cape Town, South Africa, 23–27 May 2010; pp. 1–5. [Google Scholar]
- Dobrev, S.; Durocher, S.; Eftekhari, M.; Georgiou, K.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.; Shende, S.; Urrutia, J. Complexity of barrier coverage with relocatable sensors in the plane. Theor. Comput. Sci. 2015, 579, 64–73. [Google Scholar] [CrossRef]
Notations | Description |
---|---|
T | a theme park area |
S | a set of system components |
C | a set of convex hull obstacles |
H | a set of convex hull obstacle-aware tracking barriers |
n | the number of system components including mobile robots and UAVs |
p | the total number of convex hull obstacles |
q | the required minimum target detection accuracy |
r | the communication range of system component |
i | an identifier of component, where |
k | an identifier of cooperative barrier, where |
the total number of convex hull obstacle-aware tracking barriers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Kim, H. Convex Hull Obstacle-Aware Pedestrian Tracking and Target Detection in Theme Park Applications. Drones 2023, 7, 279. https://doi.org/10.3390/drones7040279
Choi Y, Kim H. Convex Hull Obstacle-Aware Pedestrian Tracking and Target Detection in Theme Park Applications. Drones. 2023; 7(4):279. https://doi.org/10.3390/drones7040279
Chicago/Turabian StyleChoi, Yumin, and Hyunbum Kim. 2023. "Convex Hull Obstacle-Aware Pedestrian Tracking and Target Detection in Theme Park Applications" Drones 7, no. 4: 279. https://doi.org/10.3390/drones7040279
APA StyleChoi, Y., & Kim, H. (2023). Convex Hull Obstacle-Aware Pedestrian Tracking and Target Detection in Theme Park Applications. Drones, 7(4), 279. https://doi.org/10.3390/drones7040279