Ant Colony Optimization ACO Based Autonomous Secure Routing Protocol for Mobile Surveillance Systems
Abstract
:1. Introduction
- A power-aware biologically inspired secure self-organized routing protocol (P-BIOSARP) for FSNs in mobile surveillance systems is proposed.
- P-BIOSARP, a biologically inspired self-organized routing protocol (BIOSARP), encryption-enabled E-BIOSARP, and secure real-time routing protocol with load distribution (SRTLD) routing protocols were implemented in network simulator 2 (NS-2).
- Experiments were conducted and results were generated to show the variation in the total number of nodes and mobile nodes with different packet rates, multiple mobile routing, and mobile source nodes, and in terms of security, malicious nodes were injected.
- The results prove that P-BIOSARP performs far better in terms of energy consumption, delivery ratio, and data packet overhead, even with a high number of flying mobile nodes and with malicious nodes.
2. Related Work
3. Methodology
4. Implementation
5. Results
s | 14.58793 | _8_ | RTR | --- | 41 | biosarp |
r | 14.59118 | _7_ | RTR | --- | 41 | biosarp |
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhtar, M.N.; Shaikh, A.J.; Khan, A.; Awais, H.; Bakar, E.A.; Othman, A.R. Smart Sensing with Edge Computing in Precision Agriculture for Soil Assessment and Heavy Metal Monitoring: A Review. Agriculture 2021, 11, 475. [Google Scholar] [CrossRef]
- BinDhim, N.F.; Althumiri, N.A.; Basyouni, M.H.; Alageel, A.A.; Alghnam, S.; Al-Qunaibet, A.M.; Almubarak, R.A.; Aldhukair, S.; Ad-Dab’bagh, Y. Saudi Arabia Mental Health Surveillance System (MHSS): Mental health trends amid COVID-19 and comparison with pre-COVID-19 trends. Eur. J. Psychotraumatol. 2021, 12, 1875642. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Alomari, A.; Ul Amin, N.; Khan, M.A.; Khattak, H. An Energy Efficient and Formally Secured Certificate-Based Signcryption for Wireless Body Area Networks with the Internet of Things. Electronics 2019, 8, 1171. [Google Scholar] [CrossRef] [Green Version]
- Keshaviah, A.; Hu, X.C.; Henry, M. Developing a Flexible National Wastewater Surveillance System for COVID-19 and Beyond. Environ. Health Perspect. 2021, 129, 045002. [Google Scholar] [CrossRef] [PubMed]
- Ke, R.; Zhuang, Y.; Pu, Z.; Wang, Y. A Smart, Efficient, and Reliable Parking Surveillance System With Edge Artificial Intelligence on IoT Devices. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4962–4974. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, A.; Sarkar, S.; Maiti, J. A real-time video surveillance system for traffic pre-events detection. Accid. Anal. Prev. 2021, 154, 106019. [Google Scholar] [CrossRef]
- Jha, S.; Seo, C.; Yang, E.; Joshi, G.P. Real time object detection and trackingsystem for video surveillance system. Multimed. Tools Appl. 2021, 80, 3981–3996. [Google Scholar] [CrossRef]
- Janbandhu, A.C.; Sharma, S.; Ansari, I.A.; Bajaj, V. Drone-based vision system: Surveillance during calamities. In Computational Intelligence Based Solutions for Vision Systems; IOP Publishing Ltd.: Bristol, UK, 2022. [Google Scholar]
- Srivastava, A.; Badal, T.; Garg, A.; Vidyarthi, A.; Singh, R. Recognizing human violent action using drone surveillance within real-time proximity. J. Real-Time Image Process. 2021, 18, 1851–1863. [Google Scholar] [CrossRef]
- Santamaria, A.F.; Raimondo, P.; Tropea, M.; De Rango, F.; Aiello, C. An IoT Surveillance System Based on a Decentralised Architecture. Sensors 2019, 19, 1469. [Google Scholar] [CrossRef] [Green Version]
- Sukhavasi, S.B.; Sukhavasi, S.B.; Elleithy, K.; Abuzneid, S.; Elleithy, A. CMOS Image Sensors in Surveillance System Applications. Sensors 2021, 21, 488. [Google Scholar] [CrossRef]
- Ouni, R.; Saleem, K. Framework for Sustainable Wireless Sensor Network Based Environmental Monitoring. Sustainability 2022, 14, 8356. [Google Scholar] [CrossRef]
- Amiri-Zarandi, M.; Hazrati Fard, M.; Yousefinaghani, S.; Kaviani, M.; Dara, R. A Platform Approach to Smart Farm Information Processing. Agriculture 2022, 12, 838. [Google Scholar] [CrossRef]
- Khan, M.A.; Kumar, N.; Mohsan, S.A.H.; Khan, W.U.; Nasralla, M.M.; Alsharif, M.H.; Żywiołek, J.; Ullah, I. Swarm of UAVs for Network Management in 6G: A Technical Review. IEEE Trans. Netw. Serv. Manag. 2022, 1-1. [Google Scholar] [CrossRef]
- Bhushan, B.; Sahoo, G. Routing Protocols in Wireless Sensor Networks. In Computational Intelligence in Sensor Networks; Mishra, B.B., Dehuri, S., Panigrahi, B.K., Nayak, A.K., Mishra, B.S.P., Das, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 215–248. [Google Scholar]
- Mohamed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Survey on Wireless Sensor Network Applications and Energy Efficient Routing Protocols. Wirel. Pers. Commun. 2018, 101, 1019–1055. [Google Scholar] [CrossRef]
- Guleria, K.; Verma, A.K. Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wirel. Netw. 2019, 25, 1159–1183. [Google Scholar] [CrossRef]
- Yue, Y.-G.; He, P. A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions. Inf. Fusion 2018, 44, 188–204. [Google Scholar] [CrossRef]
- Rady, A.; El-Rabaie, E.L.-S.M.; Shokair, M.; Abdel-Salam, N. Comprehensive survey of routing protocols for Mobile Wireless Sensor Networks. Int. J. Commun. Syst. 2021, 34, e4942. [Google Scholar] [CrossRef]
- Kumaran, K.M.; Chinnadurai, M. A Competent Ad-hoc Sensor Routing Protocol for Energy Efficiency in Mobile Wireless Sensor Networks. Wirel. Pers. Commun. 2021, 116, 829–844. [Google Scholar] [CrossRef]
- Del-Valle-Soto, C.; Mex-Perera, C.; Nolazco-Flores, J.A.; Velázquez, R.; Rossa-Sierra, A. Wireless Sensor Network Energy Model and Its Use in the Optimization of Routing Protocols. Energies 2020, 13, 728. [Google Scholar] [CrossRef] [Green Version]
- Sara, G.S.; Sridharan, D. Routing in mobile wireless sensor network: A survey. Telecommun. Syst. 2014, 57, 51–79. [Google Scholar] [CrossRef]
- Khan, M.A.; Qureshi, I.M.; Khanzada, F. A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET). Drones 2019, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Saleem, K.; Fisal, N.; Al-Muhtadi, J. Empirical Studies of Bio-Inspired Self-Organized Secure Autonomous Routing Protocol. IEEE Sens. J. 2014, 14, 2232–2239. [Google Scholar] [CrossRef]
- Hosen, A.S.M.S.; Cho, G.H. An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks. Sensors 2018, 18, 1520. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, Q.; Zhao, T.; Tie, Y.; Bai, F.; Jin, M. An Improved Energy-Efficient Routing Protocol for Wireless Sensor Networks. Sensors 2019, 19, 4579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, T.M.; Mohapatra, S.K.; Samal, U.C.; Khan, M.S.; Daneshmand, M.; Gandomi, A.H. Residual Energy-Based Cluster-Head Selection in WSNs for IoT Application. IEEE Internet Things J. 2019, 6, 5132–5139. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Del-Valle-Soto, C.; Velázquez, R. Energy-Efficient Clustering Routing Protocol for Wireless Sensor Networks Based on Yellow Saddle Goatfish Algorithm. Mathematics 2020, 8, 1515. [Google Scholar] [CrossRef]
- Fanian, F.; Kuchaki Rafsanjani, M. Cluster-based routing protocols in wireless sensor networks: A survey based on methodology. J. Netw. Comput. Appl. 2019, 142, 111–142. [Google Scholar] [CrossRef]
- Zafar, S.; Bashir, A.; Chaudhry, S.A. Mobility-Aware Hierarchical Clustering in Mobile Wireless Sensor Networks. IEEE Access 2019, 7, 20394–20403. [Google Scholar] [CrossRef]
- Saleem, K.; Chaudhry, J.; Orgun, M.A.; Al-Muhtadi, J. A bio-inspired secure IPv6 communication protocol for Internet of Things. In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, Australia, 4–6 December 2017; pp. 1–6. [Google Scholar]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J. An Improved Routing Schema with Special Clustering Using PSO Algorithm for Heterogeneous Wireless Sensor Network. Sensors 2019, 19, 671. [Google Scholar] [CrossRef] [Green Version]
- Rathee, M.; Kumar, S.; Gandomi, A.H.; Dilip, K.; Balusamy, B.; Patan, R. Ant Colony Optimization Based Quality of Service Aware Energy Balancing Secure Routing Algorithm for Wireless Sensor Networks. IEEE Trans. Eng. Manag. 2021, 68, 170–182. [Google Scholar] [CrossRef]
- Wheeb, A.H.; Nordin, R.; Samah, A.A.; Alsharif, M.H.; Khan, M.A. Topology-Based Routing Protocols and Mobility Models for Flying Ad Hoc Networks: A Contemporary Review and Future Research Directions. Drones 2022, 6, 9. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Fisal, N.F. Secure real-time routing protocol with load distribution in wireless sensor networks. Secur. Commun. Netw. 2011, 4, 839–869. [Google Scholar] [CrossRef] [Green Version]
- Saleem, K.; Fisal, N.; Baharudin, M.A.; Ahmed, A.A.; Hafizah, S.; Kamilah, S. Ant colony inspired self-optimized routing protocol based on cross layer architecture for wireless sensor networks. WSEAS Trans. Commun. 2010, 9, 669–678. [Google Scholar]
- Saleem, K.; Fisal, N.; Hafizah, S.; Rashid, R.A. An Intelligent Information Security Mechanism for the Network Layer of WSN: BIOSARP; Springer: Berlin/Heidelberg, Germany, 2011; pp. 118–126. [Google Scholar]
- Saleem, K.; Derhab, A.; Orgun, M.A.; Al-Muhtadi, J.; Rodrigues, J.J.P.C.; Khalil, M.S.; Ali Ahmed, A. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks. Sensors 2016, 16, 460. [Google Scholar] [CrossRef] [PubMed]
- Rubeaai, S.F.A.; Abd, M.A.; Singh, B.K.; Tepe, K.E. 3D Real-Time Routing Protocol With Tunable Parameters for Wireless Sensor Networks. IEEE Sens. J. 2016, 16, 843–853. [Google Scholar] [CrossRef]
- López-Matencio, P. An ACOR-Based Multi-Objective WSN Deployment Example for Lunar Surveying. Sensors 2016, 16, 209. [Google Scholar] [CrossRef] [Green Version]
- Rupérez Cañas, D.; Sandoval Orozco, A.L.; García Villalba, L.J.; Kim, T.-h. A Family of ACO Routing Protocols for Mobile Ad Hoc Networks. Sensors 2017, 17, 1179. [Google Scholar] [CrossRef]
- Zou, Z.; Qian, Y. Wireless sensor network routing method based on improved ant colony algorithm. J. Ambient Intell. Humaniz. Comput. 2019, 10, 991–998. [Google Scholar] [CrossRef]
- Khobahi, S.; Soltanalian, M.; Jiang, F.; Swindlehurst, A.L. Optimized Transmission for Parameter Estimation in Wireless Sensor Networks. IEEE Trans. Signal Inf. Processing Over Netw. 2020, 6, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Jain, R. Ant Colony Inspired Energy Efficient OLSR (AC-OLSR) Routing Protocol in MANETS. Wirel. Pers. Commun. 2022, 124, 3307–3320. [Google Scholar] [CrossRef]
- Mokrenko, O.; Vergara-Gallego, M.; Lombardi, W.; Lesecq, S.; Albea, C. WSN power management with battery capacity estimation. In Proceedings of the 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble, France, 7–10 June 2015; pp. 1–4. [Google Scholar]
- Chen, S.; Yao, J.; Wu, Y. Analysis of the Power Consumption for Wireless Sensor Network Node Based on Zigbee. Procedia Eng. 2012, 29, 1994–1998. [Google Scholar] [CrossRef]
- Du, W.; Mieyeville, F.; Navarro, D. Modeling Energy Consumption of Wireless Sensor Networks by SystemC. In Proceedings of the 2010 Fifth International Conference on Systems and Networks Communications, Nice, France, 22–27 August 2010; pp. 94–98. [Google Scholar]
Based on | Parameters | Simulation | Compared with | Limitations | |
---|---|---|---|---|---|
[35] | RTLD | Link quality, E2E delay, and remaining battery | NS-2 | RTLD | Not intelligent; unable to optimize with dynamical changes in the network |
[37,38] | SRTLD | Link quality, E2E delay, and remaining battery | NS-2 | RTLD, SRTLD, BIOSARP, ESPA, TinyHash, TinySec, TinySec-AE, TinySec, TinySec-Auth, EBSs, and LBRS-Auth | Every deployment or little change in the network needs all network nodes to be reconfigured |
[39] | All nodes know the destination location | Queuing and processing delays | OMNeT++ | ABLAR and 3D Greedy GRP | Simulations under various network densities and traffic load conditions, but power is mainly not considered |
[40] | Distribution of helium-3 (3He) | Average distance based on coordinates | MATLAB | Four-directional placement (FDP) heuristic algorithm | Only the multi-objective WSN placement problem is considered |
[41] | AntHocNet | Link quality | Network Simulator 3 (NS-3) | AntOR-DLR, AntOR-RDLR, AntOR-UDLR, AntOR-v2, and HACOR | Power or the remaining energy parameter is not considered |
[42] | Gradient field and broadcasting messages and exchanging hops | Data transmission, delay packet loss rate, and node residual energy | Programmed Simulator | Equilibrium-based algorithm (DEBA) | The data packets are sent to destination only on shortest path |
[43] | ADMM-based average consensus algorithm | Gram–Schmidt process and power-method-like iterations | Theoretically | SDP-based approach | No experiments were conducted |
[44] | OLSR | Link quality and neighbor link quality | NS2 | OLSR, EE-OLSR, and AntNet | Feedback is involved that comes with huge traffic overhead |
Scenario Parameters | Selection/Value |
---|---|
MAC Type | IEEE 802.15.4 |
Physical Type | IEEE 802.15.4 |
Initial Battery Power | 3.6 |
Model of Propagation | Shadowing (Reference Distance =1 m Path loss exponent = 2.5 Shadowing deviation = 4 dB) |
Simulation Run Time | 8 nodes = 100 s 50 nodes = 100 s 121 nodes = 300 s |
Packet Size | 70 bytes |
Traffic | Constant Bit Rate (CBR) |
Packet Rate | 0.7/s 1.5/s 2.2/s 3.6/s |
Frequency | 2.4 GHz |
Area | 80 m × 80 m |
Sink Node | 1 |
Source Nodes | 8 nodes = 1 |
Routing Protocol | Energy Per Packet | Delivery Ratio | Packet Overhead |
---|---|---|---|
SRTLD | 0.378512 | 0.552756 | 20.676254 |
BIOSARP | 0.326386 | 0.663456 | 5.34478 |
E-BIOSARP | 0.3491854 | 0.6073718 | 7.02823 |
P-BIOSARP | 0.212207516 | 0.3907988 | 73.678464 |
E-BIOSARP with malicious activity and increase in nodes | 0.2919038 | 0.651960333 | 6.655437333 |
P-BIOSARP with malicious activity and increase in nodes | 0.10608872 | 0.648336 | 8.357306 |
E-BIOSARP with malicious activity and increase in malicious nodes | 0.151109922 | 0.6457558 | 4.4907028 |
P-BIOSARP with malicious activity and increase in malicious nodes | 0.150090122 | 0.6399052 | 4.4263052 |
E-BIOSARP with malicious activity and mobile and malicious nodes | 0.24987561 | 0.166068 | 113.925225 |
P-BIOSARP with malicious activity and mobile and malicious nodes | 0.149679595 | 0.273272 | 43.325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, K.; Ahmad, I. Ant Colony Optimization ACO Based Autonomous Secure Routing Protocol for Mobile Surveillance Systems. Drones 2022, 6, 351. https://doi.org/10.3390/drones6110351
Saleem K, Ahmad I. Ant Colony Optimization ACO Based Autonomous Secure Routing Protocol for Mobile Surveillance Systems. Drones. 2022; 6(11):351. https://doi.org/10.3390/drones6110351
Chicago/Turabian StyleSaleem, Kashif, and Iftikhar Ahmad. 2022. "Ant Colony Optimization ACO Based Autonomous Secure Routing Protocol for Mobile Surveillance Systems" Drones 6, no. 11: 351. https://doi.org/10.3390/drones6110351
APA StyleSaleem, K., & Ahmad, I. (2022). Ant Colony Optimization ACO Based Autonomous Secure Routing Protocol for Mobile Surveillance Systems. Drones, 6(11), 351. https://doi.org/10.3390/drones6110351