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Abstract: Wireless sensor networks (WSNs) can gather in situ real data measurements and work
unattended for long periods, even in remote, rough places. A critical aspect of WSN design is
node placement, as this determines sensing capacities, network connectivity, network lifetime and,
in short, the whole operational capabilities of the WSN. This paper proposes and studies a new
node placement algorithm that focus on these aspects. As a motivating example, we consider
a network designed to describe the distribution of helium-3 (3He), a potential enabling element
for fusion reactors, on the Moon. 3He is abundant on the Moon’s surface, and knowledge of its
distribution is essential for future harvesting purposes. Previous data are inconclusive, and there
is general agreement that on-site measurements, obtained over a long time period, are necessary
to better understand the mechanisms involved in the distribution of this element on the Moon.
Although a mission of this type is extremely complex, it allows us to illustrate the main challenges
involved in a multi-objective WSN placement problem, i.e., selection of optimal observation sites
and maximization of the lifetime of the network. To tackle optimization, we use a recent adaptation
of the ant colony optimization (ACOR) metaheuristic, extended to continuous domains. Solutions
are provided in the form of a Pareto frontier that shows the optimal equilibria. Moreover, we
compared our scheme with the four-directional placement (FDP) heuristic, which was outperformed
in all cases.
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1. Introduction

Fusion is attracting increasing attention, as unlike fission reactions, fusion reactions do not
generate radioactive waste. Fusion reactors are designed to mimic nuclear reactions produced in
the Sun by forcing together the nuclei of two hydrogen isotopes: tritium and deuterium [1]. The
byproducts are energy, helium and high-energy neutrons, which are a containment risk [1,2]. This
obstacle, however, can be overcome by substituting tritium for helium-3 (3He). 3He is a single
neutron isotope of helium produced naturally through hydrogen fusion in the Sun. Unfortunately,
the Earth’s atmosphere and its magnetic field repel this element, and only traces of this element exist
on Earth. The Moon, by contrast, has accumulated large amounts of 3He on the uppermost layer of
its surface [3] (lunar regolith), bringing researchers on Earth to consider the possibility of mining this
element from the Moon [4–6].

An endeavor of this magnitude, however, would require detailed planning and, of course,
knowledge about the distribution and abundance of 3He on the Moon. Estimations of 3He abundance
and distribution rely on parameters, such as solar wind flux, lunar regolith composition and maturity,
lunar regolith grain size and regolith thickness. The compilation of all of these variables in a system
model makes 3He estimation an extremely complex task. Indeed, existing 3He distribution and
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reserves models are marked by critical discrepancies due to imprecise or insufficient lunar data [7].
More accurate estimations would require large-scale, more detailed on-site surveying. Recent studies
by Prasad and Murty [8], Pabari et al. [9] and Zhai et al. [10] have brought attention to the potential
of wireless sensor networks (WSNs) for geological and mineral analysis on the Moon. In this
paper, we focus on this scenario as a motivating example to evaluate a novel algorithm for optimal
WSN placement.

WSNs are considered an enabling technology for unattended, long-lasting and rough terrain
monitoring and have been widely studied in recent years [11,12]. They are constituted by multiple,
small, relatively inexpensive nodes, which gather and relay environmental data to sink nodes, which
in turn, forward this data to control centers. In any realistic WSN deployment, the placement of
nodes must be carefully planned to ensure they are located in the best possible observation sites and
to maximize the quality of the information gathered. In our proposed lunar 3He survey, it is critical to
select sites that would improve the chances of obtaining trustworthy information on 3He distribution
and abundance. Such a decision would normally be made on the basis of previous studies that
have either directly or indirectly assessed the quality of each site. In our case, however, there are no
maps available that directly characterize 3He distribution, although in recent works, authors, such as
Li et al. [7], Slyuta et al. [13], WenZhe and YaQiu [14] and Zheng et al. [15], agree that there might be a
direct correlation between TiO2 and 3He abundance. In Section 5.1 of the paper, we therefore consider
a two-dimensional target area in which non-uniform mapping of TiO2 indicates the suitability of
each site for 3He characterization. These maps can either offer a finite set of candidate sites (discrete
placement) or place no constraints on placement (continuous placement). We focus exclusively on the
latter case, since discrete placement is much simpler and has already been studied in depth [16,17].

Maximal spatio-temporal resolution is also desirable in geological surveys. On the one hand,
this implies minimal separation between nodes to avoid redundant information, and on the other
hand, it places a limit on maximal separation, as nodes need to establish radio-communication links
with each other. In general, placement must guarantee network connectivity, i.e., it must guarantee
the establishment of routes for conveying information to the sinks. Both questions are considered
in our lunar example: minimal separation is addressed by using nodes with a sensing range, while
connectivity is a constraint imposed on the problem.

Energy is also a major consideration in WSN placement. Access to battery replacements may be
cost-prohibitive (e.g., polar surveys) or even impossible (e.g., a lunar survey) in hostile environments.
Alternative sources, such as solar panels, are not always feasible (a lunar night, for example, lasts
∼14 Earth days), but may offer chances for recharge. For our scenario, energy efficiency should be
explicitly included in the design of the WSN to prevent battery outages. Naturally, however, this goal
must be balanced against another major concern: data quality. The bulk of WSN energy is consumed
during radio communications, i.e., during transmission and reception (either of actual messages or
idle listening). Therefore, we consider that energy consumption should be determined by the amount
of data generated by each node (directly related to the quality of the site) and the “length” of the path
(in hops) to the sink.

In brief, our proposed optimization scheme has two objectives: (i) to maximize the chances
of obtaining good 3He distribution data and (ii) to minimize energy consumption. Finding exact
solutions to problems of this type can be a daunting task given the complexity and, in many cases,
may even become computationally intractable [18]. One solution chosen by many authors to find
near-optimal solutions to multi-objective deployment problems is the use of metaheuristic algorithms
(see Section 2), which is very much still an open research area. In our case, we drew on research
by Socha and Dorigo [19], which extends the ant colony optimization (ACO) metaheuristic (see
Dorigo et al. [20]) to handle continuous domains. This algorithm is termed ACOR, and to our
knowledge, this is the first time it has been applied to a WSN deployment problem. Our approach is
intended to be more realistic than previous, related studies in several respects:
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(1) The proposed deployment model considers coordinates as continuous variables.
(2) We explore the novel use of the ACOR metaheuristic in a deployment problem and a

multi-objective optimization problem. The literature on deployment problems in relation to ACO
is limited, and we are faced thus with an open area of research. In addition, our work is the first
ACO-related research to use preferential sensing coverage.

(3) We present an original application scenario. Multi-objective deployment problems to date have
mostly been applied to small-gridded, artificially-developed scenarios (see Section 2). We, by
contrast, test our approach on a large extension of the Moon surface containing traces of 3He:
the Dionysius region.

(4) We have adjusted parameters of the ACOR algorithm to the deployment problem. This procedure
and the resulting optimization model could be extended to other target scenarios and optimization
objectives.

(5) We evaluated the proposed deployment methodology by comparing ACOR to a simple heuristic
in terms of coverage. A tradeoff between joint-coverage and energy cost is also computed, which
could be useful when planning a lunar exploration mission.

The remainder of this paper is organized as follows. Section 2 introduces related work. Section 3
presents the deployment problem and formulates it as a multi-objective optimization problem.
Section 4 overviews the ACOR algorithm. Section 5 describes our target scenario and the results
achieved. Finally, Section 6 concludes the paper.

2. Related Works

In-depth reviews of the use of metaheuristics for WSN deployment problems are presented
by Deif and Gadallah [16] and Tsai et al. [18]. In the latter case, the authors differentiate between
metaheuristic algorithms that look for a solution in one and only one direction (in multi-variable
space) at each iteration, such as tabu search or simulated annealing, and metaheuristics capable
of searching in more than one direction at a time (population-based algorithms). These include
evolutionary algorithms and swarm intelligence, which we focus on in the next section.

Swarm-based algorithms have been used to address multi-objective optimization deployment
problems in recent years. These metaheuristics are inspired by the resilient property of certain
biological species to collectively solve complex tasks (swarm intelligence). For instance, the ability
of ants to find the shortest path to food inspired the development of ACO [21], while bird-flock
movements during foraging led to the development of particle swarm optimization (PSO) [22].
These methods have outperformed common node placement techniques. Banimelhem et al. [23] and
Pradhan and Panda [24], for example, use a genetic algorithm and binary particle swarm optimization
method, while Liao et al. [25] compare virtual forces and glowworm swarm optimization, and
Yu et al. [26] use artificial bee colony (ABC) optimization. A comparison deployment study performed
by Mini et al. [27] shows how ABC outperforms PSO in terms of prolonging network lifetime.
The paper by Sengupta et al. [28] introduces a fuzzy dominance-based decomposition technique
in a multi-objective evolutionary algorithm that improves results obtained with PSO and simple
genetic algorithms.

ACO has been widely applied to several networking problems, such as routing problems, as
pointed out in the work of Kulkarni et al. [29]. For example, Cheng et al. [30] focus on network
lifetime extension. Saleem et al. [31] deal with network hole minimization (i.e., the minimization of
unconnected parts), whereas in [32], the same authors focus on optimizing delay, packet loss and
power consumption. Lin et al. [33] and Ye and Mohamadian [34], in turn, propose mechanisms to
eliminate redundancy by combining data from different sources in order to improve performance.
In a recent study, Liu [35] presented an optimal distance-based transmission strategy to improve
network lifetime. All of these works show that ACO-based solutions provide flexible and sound
routing solutions. However, until now, ACO has been barely used to address deployment problems
in WSNs.
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Several studies [36–41] have attempted to formulate deployment as a multi-objective
discreteoptimization problem with the application of ACO. In [36], the deployment aims to achieve full
coverage in a gridded region with a minimum number of nodes. The authors employed a variant of
ACO (Max-Min Ant) to solve the problem and showed that it can improve genetic-based algorithms
in terms of the number of sensors. In [37], the authors presented a modified ACO algorithm to adjust
the solution to different situations in the convergence process. The goal in [38] is to deploy sensors
along a grid to cover points of interest while maintaining network connectivity. This procedure is
similar to the local search method proposed by Rebai et al. [42] and to the four-directional placement
(FDP) heuristic described in Section 5.1, which we use as a reference proposal. In addition, the authors
use non-uniform node deployment to place more nodes in areas with a heavier load, thus increasing
lifetime as a trade-off for deployment cost. By contrast, the ACO system approaches described
in [39–41] only address optimization of network energy resources. Liao et al. [39] adapt ACO to
solve a multi-knapsack problem, where energy is a resource that must be optimized among clusters
of sensors. Anil Kumar and Thomas [40], in turn, use ACO to select optimal sub-sink nodes in order
to minimize energy cost when transmitting to a mobile sink. Finally, Lin et al. [41] maximize network
lifetime by using ACO to compute optimal clustering of the network while maintaining full coverage.
None of these ACO deployment problems consider the continuous domain of node positions, or use
ACOR, and in addition, they all target discrete or gridded areas that, unlike our lunar example, are
unrealistic.

Other non-ACO multi-objective node placement-related approaches are described in [43–50].
Like us, the authors consider a deployment area characterized by the spatial irregularity of the
sensed event. The goal of works [43] and [44] is to find global Pareto-optimal solutions to a
multi-objective deployment problem with coverage, connectivity and lifetime constraints. Two
heuristics are proposed: an adaptation to several objectives of the tabu search metaheuristic and
a virtual potential field algorithm. Sengupta et al. [48] use the same multi-objective optimization
methodology as in [28] to achieve maximum lifetime and coverage. In this case, instead of dealing
with traditional grid or uniform coverage, the authors focus on probabilistic coverage in regions
that require different levels of sensing. In these works [43,44,48], tests are developed in small,
artificially-generated scenarios. The authors of [45,47,50] also use small test scenarios, but in this
case, they are more realistic. In [45] and [47], the authors present a novel hybrid scheme based
on geostatistical analysis and the Monte Carlo technique. The aim is to find optimal sites with the
minimum averaged variance of the measured phenomena. Deployment tests are performed with
realistic data: mercury in soil outside Oak Ridge Reservation in [45] and chromium contamination
at Los Alamos National Laboratory in [47]. None of the works [45–47,49] address the optimization
of energy costs. One algorithm that does address energy cost is that presented by González-Castaño
et al. [50], whose aim is to locate shots in a national park to detect poaching. Node sites are selected
for maximal sensing coverage and minimal installation cost (related in this case to distance to power
lines). Nonetheless, the optimization methodologies used in [45,47,49,50] are not bioinspired.

In short, the literature on multi-objective deployments using ACO is scarce. In the models
described, node positions are restricted to a finite set of candidate sites (discrete optimization), and
tests are undertaken in small artificial scenarios. Furthermore, none of the ACO deployment studies
reviewed consider irregularities in sensing coverage. We, by contrast, tested our model for use in a
large realistic deployment scenario (the Moon), where positions can be selected from a continuous
set. We used ACOR, a new ACO metaheuristic, for continuous variables. To our knowledge, this
metaheuristic has not been used before in either single- or multi-objective deployment problems.

3. WSN Deployment Model

Our model comprises a set of N nodes (including a base/sink node per network). Let us
recall from Section 1 that the WSN must be deployed in a target area where placement sites have
a non-homogeneous quality. The goal is to maximize the importance (information about 3He
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distribution) obtained. In other words, sites expected to contain higher traces of 3He are more
importantthan sites with lower estimations of 3He traces. The planning is subject to communication
constraints, as well, since nodes must have a path (either direct or indirect via a multi-hop route) to
the sink node. Figure 1 illustrates the main elements of the model.

Active node

Sink node

Disconnected node

s
Sensing area

Communication area

rt
r

X

Figure 1. Connectivity and sensing parameters.

Formally, let a region X ⊆ R2 represent the target area. There exists an importancemapping
(representing expected 3He distribution) associated with every point x ∈ X , which is defined by a real
function α : X → R+

0 . A solution s = {xi}i=1,...,N is a set containing the position of nodes, s ∈ S , and
S is the set of all (candidate) solutions. Besides, the following considerations have been established:

• The hardware of the nodes is homogeneous, i.e., it is of the same type and has the same
communication/sensing capabilities.

• The sink node can be any of the N sensor nodes. Without loss of generality, we assume that it is
Node 1 and is therefore positioned at x1.

• The dimension of our problem is 2N, since a solution is composed of positions of N nodes in an
R2 space.

• The sensing range rs is the minimum significant separation required between two nodes to consider
their sensing data independent. The information gathered by sensor i is then given by:

Ii =
∫

B(xi ,rs)
α(x)dx (1)

where B(x, r) is the open ball in R2 centered in x with radius r. Figure 2 depicts this model.

• The transmission range rt is the longest separation distance between two mutually communicating
nodes, and it determines network connectivity. Let us term active nodes all nodes able to transmit
their sensed data to the sink, and let A denote this set of nodes.

3.1. Coverage Objective: Importance

If sensing areas of active nodes overlap, the information gathered is counted only once, since as
stated above, it is not independent. In other words, the open set describing the sensed area is:

B =
⋃
i∈A

B(xi, rs) ∩ X (2)

Thus, the sensing is given by f1 : S → R+
0 ,

f1(s) =
∫
B

α(x)dx (3)
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rt B(xi , rs)
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B(xi ,rs )

∝(x1)

∝

!

sink

∝(xk)

sensing

area

Figure 2. Problem description.

which measures the importance (i.e., information about 3He) covered by the nodes and which we aim
to maximize.

3.2. Energy Objective: Cost

Energy efficiency is another important factor that must be taken into account. As stated
previously, it is mandatory to reduce global energy consumption. In our model (see Figure 3), we
assume the shortest hop-count path routing, as well as an anti-collision layer based on a duty cycle
with on/off periods. Both strategies are common in WSNs [51].

sink

xi

The minimal hops to the sink for 

node i (ni ) can be obtained 

for example by applying 

Dijkstra's algorithm

Energy during data transmission 
is related to the importance of the 

sensor's location (xi ) and the 

number of hops to convey 

messages to the sink (hi )

Routing assumes the 

shortest path (in 

number of hops) to 

the sink

Figure 3. Routing of messages generated by node xi towards the sink.

In WSNs, energy consumption is mostly due to message transmission/reception, and other
sources of waste, such as CPU load or electronics sensing, have only a minor impact [52]. With
the assumption of an operation in a duty cycle, nodes turn on the radio during the active stage for
the transmission and reception of messages. The energy used depends on the number of transmitted
messages. In our model, we reasonably assume that more important places cause more transmission
events, and therefore, transmission consumption is proportional to α(x) if the node is placed at
x. In addition, the routing of the node also plays a central role in energy consumption, since the
messages must be retransmitted by intermediate nodes on their way to the sink. Let hi denote the
number of hops on the minimal hop-count route from node i to the sink. Then, the energy associated
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with the transmission of a node i can be expressed as etxα(xi)hi, where etx is constant and represents
the energy used per message (assuming constant-length messages).

Finally, the reception consumption is considered constant (let Erx denote it) in most WSN
models [53], since radios are permanently on during the active part of the duty cycle. That is because
it is not possible to forecast when incoming messages will arrive. From this perspective, an expression
for energy consumption in the WSN can be obtained directly as follows:

f2(s) = etx

N

∑
i=1

α(xi) hi + Erx N

Since the goal is to minimize this function, constants etx and Erx can be safely removed from the
optimization problem description, leading to:

f ∗2 (s) =
N

∑
i=2

α(xi) hi (4)

Note also that h1 = 0 because Node 1 is the sink.

3.3. Multi-Objective Deployment Problem

Our ultimate task is to place N sensors such that the information covered, f1, is maximized and
the energy cost, f ∗2 , is minimized. Clearly, both objectives are contradictory and must be balanced:
function f1 selects positions with more information about 3He, whereas f ∗2 tends to concentrate nodes
close to the sink. For that reason, it is desirable to produce a Pareto front [54] for these two goals.
A Pareto front is a set of non-dominated solutions and represents a pool of candidate optimal solutions,
which allow the establishment of optimal trade-offs in the problem balance.

This joint problem can be stated as:

maximize
s∈S

Ψ︷ ︸︸ ︷
θ f1(s) + (θ − 1) f ∗2 (s)

(5)

The Pareto front can be obtained by solving problem Equation (5) repeatedly, assigning values to
θ ∈ [0, 1]. As mentioned, it is a set of non-dominated solutions, that is solutions where the value of f1

cannot be improved without worsening the value of f2, and vice versa. Examples in Section 5.2 show
the Pareto front obtained in our lunar survey example. The next section describes our optimization
model based on ACOR.

4. Optimization Methodology

ACO is a metaheuristic for combinatorial optimization (i.e., discrete domain problems). It is
inspired by the foraging behavior of real ants, proposed by Dorigo et al. [20]. In ACO, ants build
candidate solutions while exploiting search experiences and problem knowledge, represented by
coefficients (pheromones and heuristic information, respectively) associated with each solution. Once
an ant completes a new solution (at each iteration of the algorithm), the pheromones are updated to
direct the ants towards the most promising regions of the search space. These algorithmic activities,
namely (1) construction of ant-based solutions and (2) pheromone updating, are the main constructs of
the ACO. ACOR [19] also maintains this structure, but adapts it to the continuous domain of the
variables. Basically, the idea underlying ACOR is the shift from a discrete probability distribution to
a continuous distribution to generate new solutions.

ACOR uses a solution archive (T) to store former solutions (see Figure 4) and their corresponding
pheromone information. Each solution in T is a real-valued 2N-dimensional vector si={xi, yi}i=1...N
corresponding to coordinates of the N nodes in X = {(x, y) ∈ R2 : xmin ≤ x ≤ xmax, ymin ≤ y ≤
ymax}. A solution is an N-bivariate vector in X N , which stores site positions. New solutions are
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obtained as samples of a continuous random vector {Xi, Yi}i=1,...,N whose distribution function is
determined from the previous solutions and their pheromone level. This process is explained in the
next section.

X1 Y1 X2 Y2 Xi Yi YN

s1 x11 y11 x12 y12 · · · x1i y1i · · · y1N Ψ(s1) w1

s2 x21 y21 x22 y22 · · · x2i y2i · · · y2N Ψ(s2) w2
...

...
...

...
...

...
...

...
...

...
...

−−→sl xl1 yl1 xl2 yl2 · · · xli yli · · · ylN Ψ(sl) wl

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

sK xK1 yK1 xK2 yK2 · · · xKi yKi · · · yKN Ψ(sK) wK

Figure 4. Solution archive (T) used by ACOR in the placement optimization problem.

4.1. Initialization

Our placement optimization algorithm begins by initializing the solution archive with K
solutions {sl}l=1...K, generated randomly. These solutions are ranked in T (s1 the best and sK the
worst) according to their objective function value, in our case expressed by Ψ in Formula (5). Besides,
each solution has an associated weight, which is computed as:

wl =
1

qK
√

2π
e
− (l−1)2

2(qK)2 (6)

where l is the rank of solution sl . The operational parameter q modulates the chance of selecting
each row in T. In other words, when q is small, the best-ranked solutions are strongly preferred,
and when it is large, the probability becomes more uniform. Since the w’s are used by the ants to
make probabilistic decisions on how to sample the search space, they are providing the heuristic
information of the algorithm. Initialization is the first step of the algorithm, as shown in Figure 5.
At this point, we also set p number of ants, each of which is in charge of constructing a complete
solution at each iteration.

Construction of

p solutions

sK

! (sK-p+1)

! (sK)

1

K

K-p+1
K-p

Pheromone Update

Termination

conditions
Optimal   

Solution

sK-p+1

Best actual

(k-p) solutions

New

p solutions

p ants

T  

! (s1)

rank solutions

of archive T 

maxiter
comparison

Initialization

si , ! (si ), wi 
i=1,…,K

ranked

solutions 

archive T

Figure 5. ACOR main loop scheme.
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4.2. Construction of Ant-Based Solutions

To compose a new solution, a sample for each i-th random component Xi and Yi (Figure 4) is
computed. The distribution function of Xi is given by:

FX
i (x) =

K

∑
r=1

wrFX
ri (x) (7)

where FX
ri are Gaussian random variables:

FX
ri (x) ∼ N

(
µX

ri , σX
ri

)
(8)

the means of which become µX
ri=xri, r=1, ..., K and σX

ri are their standard deviations. The elements wr

are the weights Equation (6) associated with each ranked solution in archive T. Yi components are
obtained similarly.

A simple procedure to generate samples of random variables of the type in Equation (7) is the
composition method [55]. First, a row l in T is selected. Each row l has a probability pl = wl/ ∑K

r=1 wr

in this selection. Then, for each i = 1, ..., N, sample functions N(xli, σX
li ) and N(yli, σY

li ).
The standard deviations of these Gaussians functions are:

σX
li = ξ ∑

1≤r≤K

|xri − xli|
K− 1

(9)

which is the average distance between the coordinate value xli (i-th node) of solution sl and the values
of the respective coordinate of the other solutions in T multiplied by ξ. The standard deviations σY

li are
computed similarly. Parameter ξ regulates the tendency of the ants to explore locations that have not
yet been evaluated. The process of choosing a row and building a new candidate solution is repeated
p times (corresponding to the number of ants) per iteration. Before the next iteration, the algorithm
updates the solution archive, as we explain in the next section.

4.3. Pheromone Updating

Pheromone information is used by ants to reinforce promising solutions and bias the
probabilistic decisions of other ants toward these solutions. As we mentioned earlier, pheromone is
stored in T, and its content is updated at each iteration of the algorithm. This update is accomplished
by adding the p newly-generated solutions to the solution archive T and removing the same number
of worst solutions (see Figure 5). Solutions in T are then ranked before a new iteration is started. This
process ensures that only the K best solutions are kept in the archive, so that they effectively guide
the ants in the search process.

Eventually, the algorithm stops executing solution generation cycles when no improvements for
the highest-ranked solution are found after a given number of iterations (maxiter).

5. Placement Algorithm Evaluation

5.1. WSN Planning Preliminaries and Lunar Target Area Selection

Among the different candidate lunar areas, we propose a closer study of the Dionysius
region [56] by means of a WSN. The Dionysius region is located near the western edge of Mare
Tranquillitatis (see Figure 6a) and is centered on the Dionysius crater (2.8◦N, 17.3◦E), which has a
diameter of 18 km. This region is known to have a high concentration of ilmenite material (FeOTiO3),
which is thought to contain 3He (Zheng et al. [15]).

Our aim is to deploy the WSN at the points where models have predicted a greater abundance
of 3He. We assume that trustworthy points correspond to zones with TiO2 abundance (see Section 1),
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a good tracer of ilmenite. Therefore, a digital map of TiO2 content represents an indicator function
corresponding to the presence of 3He and can potentially be used for our proposal.

(a)

(b) (c)

Figure 6. Dionysius region of interest with coordinate values S 1.6 N 4.2 and W 15 E 19 in degrees.
(a) NASA’s Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) relief image in
orthographic projection of the lunar near side and the Dionysius region in the center. Source:
http://wms.lroc.asu.edu/lroc; (b) percentage of TiO2 weight (wt%) using the Lucey et al. [57] method.
Source: http://www.lpi.usra.edu/lunar/tools/clementine/; (c) the Dionysius region of interest with
an overlay of TiO2 percentage in black tones.

We used an image map of TiO2 abundance in our area of interest, delimited by latitude S 1.6◦

N 4.2◦ and longitude W 15◦ E 19◦ and generated through the Clementine Mapping Project of the
Lunar and Planetary Institute (LPI) [58] web service. The image size is 1213× 789 pixels, and its scale
is 0.1 km/pixel in single cylindrical projection (plate carrée) [59] corresponding to an approximate
surface of 120 × 78 km2. The weight percent (wt%) of TiO2 is computed based on the method
described by Lucey et al. [57], as shown in Figure 6b, where brighter tones indicates higher Ti
content (i.e., higher importance or estimated 3He). For the convenience of this work, the original
RGB Figure 6b was color inverted and indexed, such that each pixel in the image has an associated
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value, ranging from zero for the whitest areas (minimum TiO2 abundance) to 255 for the darkest
areas (maximum TiO2 abundance). It represents our importance function, as defined in Section 3,
indicating the expected 3He distribution at each location. Figure 6c shows the resulting indexed
image overlying a relief image of the same coordinates in simple cylindrical projection obtained from
the Lunar Reconnaissance Orbiter Camera [60].

Without loss of generality, we can make the following practical considerations for
the deployment:

• Excluding the centered Dionysius crater, the region of deployment is smooth enough to be
considered a flat surface (i.e., it is not rugged). Although there may be some 3He inside the crater,
the amounts are small and distant from other parts of the scenario and, thus, can be ignored.

• The maximum number of sensor nodes has been restricted to N = 150, because spacecraft payload
capacity is always limited [61]. In order to scatter these nodes in our huge target area, parameter
rt needs to be adjusted. In our tests, we have set a long transmission range rt = 6 km.

• Antennas are assumed to be omnidirectional dipoles placed at sufficient height above the Moon
surface to ensure that signal propagation (reflection, diffraction, penetration, etc.) is not affected
by ground effects. Under these conditions, the propagation model on the lunar surface could be
approximated to the free-space model, even for long-range distances [62,63].

• We assume that the transmission power of our nodes may be adjustable between 0 dBm and
20 dBm; we also assume a carrier frequency of 900 MHz. This frequency allows reduced antenna
dimensions of 8.32 cm, which are suitable and easy to manage in space applications and also
require less energy consumption than higher operation frequencies.

An estimation of the received power at a 6-km distance can be computed using the well-known
Friis equation [64].

For instance, if we select a transmitting power of 10 dBm (assuming typical dipole gains
Gr = Gt = 2.15 and a system loss factor of L= 1), then we obtain a received power of −92.8 dBm.
Commercial transceivers of these characteristics are easily available [65].

• The sensing range is set to rs = 1.5 km (15 pixels in Figure 6c).
• The deployment of nodes on the lunar surface could be achieved using a rover, navigating the

lunar surface. This scheme would allow controlled positioning of the nodes, although it might
take a long time to put all of the nodes in place. Possible alternative methods include dropping
the nodes from a spacecraft or launching them from a rover (Sanz et al. [66]).

5.2. Validation Tests

Based on adjustment tests in the deployment region, the following ACOR parameters
were selected:

• Number of solutions within archive T: K = 300.
• Number of ants: p= 8.
• q = 0.025 and ξ = 0.65.
• maxiter = 70, 000.

The better the tuning of ACOR, the better the algorithm will perform (higher objective function
and lower computation time). For instance, the size K of the solutions table is critical because it
determines the complexity of the pdfs that the ants have to sample to generate new solutions. This
parameter has been tested for different network sizes (N = 10, 30, 50, 70, 90, 110, 130, 150). Figure 7
shows the relative importance for N = 30 and N = 50. The relative importance is defined as the ratio
of the importance map covered Equation (3) to the total importance (Γmax) contained in the map,

f1/Γmax = f1/
∫
X

α(x)dx (10)
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Figure 7. Relative importance sensed and computing time.

Results for K = 300 have the highest relative importance and the smallest computing time of the
algorithm. All computations were performed on an 8-CPU Xeon E5 computer with 128 Gb of RAM.
Tables 1 and 2 collect WSN deployment and ACOR operating parameters, respectively.

Table 1. Technical parameters.

number of nodes N ≤ 150

transmission range rt = 6 km

sensing range rs = 1.5 km

transmitter power Pt = 10 dBm

Table 2. ACOR initialization parameters.

T size K = 300

number of ants p = 8

heuristic parameter q = 0.025

pheromone evaporation rate ξ = 0.65

termination condition maxiter = 70000

Next, we contrast our results with those obtained using a reference heuristic used previously in
Rebai et al. [42], which for convenience we call four-directional placement (FDP). For this FDP heuristic,
a grid is considered over the target area, with an rt/2 space lattice. The FDP is an iterative algorithm,
which starts at a random position. At each step, it selects the adjacent, previously unselected point
of the grid with the highest importance, such that the network remains connected. Following the
up, down, right and left directions, the adjacent points are evaluated at rt/2 and rt distances from
the current position. If several points have the same value, FDP chooses one at random. During this
process, the points evaluated are kept in a sorted table (observed points table) in descending order
of relevance. The top one is selected as the node position, and the process continues from this point.
Note that this algorithm guarantees full connection of the network.

In our target area of Figure 6b, we considered the deployment of N=10, 30, ..., 150 sensors
and θ = 1, evaluating the relative importance. These experiments were repeated 20 times (8×20
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deployment simulations) for each of these algorithms, ACOR and FDP. The relative importance is
displayed in Figure 8a and the efficiency in Figure 8b, with a confidence level of 95%.
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Figure 8. Performance comparison of ACOR-based versus the four-directional placement (FDP)
heuristic.

Efficiency ρ is computed as joint-coverage ( f1) divided by the maximal information that can
be sensed by N nodes. That is, ρ = f1/(Nπr2

s vmax), where vmax = 255 is the maximum value
of importance assigned to a point on the map. Efficiency provides insight into the quality of the
deployment. Clearly, efficiency decreases with the number of nodes, since as network size increases,
more nodes are used to gather less important data or simply to convey information from distant
zones. Table 3 shows the maximum joint-coverage and the efficiency for different deployment
instances, some of which (N = 30, 90, 150) are depicted in Figure 9. The sensing coverage zone of each
node is represented by a semi-transparent yellow circle; yellow lines are the shortest paths between
the sink node (marked in white) and each node. Note that with ACOR, sensing zones do not overlap
in order to maximize f1.

Table 3. Maximum joint-coverage in deployments.

Relative Importance
( f1/Γmax)

Efficiency (ρ)

N nodes ACOR FDP ACOR FDP

10 0.0110 0.0110 0.9919 0.9883

30 0.0321 0.0312 0.9568 0.9328

50 0.0535 0.0489 0.9581 0.8762

70 0.0741 0.0600 0.9478 0.7669

90 0.0947 0.0742 0.9415 0.7377

110 0.1150 0.0847 0.9356 0.6892

130 0.1346 0.0919 0.9265 0.6323

150 0.1533 0.0972 0.9142 0.5800
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N = 30 N = 30

N = 90 N = 90

N = 150 N = 150

Figure 9. Node placement examples for different numbers of nodes in the Dionysius region. ACOR

(left) and FDP (right). Numerical results in Table 3.

The results of Figure 8 demonstrate that our ACOR-based algorithm outperforms the FDP
heuristic, even in scenarios with few nodes. These figures show how with ACOR, joint-coverage ( f1)

grows steadily as the number of nodes increases. When the network is small (N ≤ 20), the efficiency
of ACOR and FDP is comparable. However, as the network size increases, ACOR maintains a high ρ,
even for complex networks (e.g., 85% at N = 150), but FDP efficiency decreases steadily.

Figure 10 depicts the evolution of the algorithm convergence time versus the number of nodes
and map size in both scenarios. We performed 50 tests with three different scenario sizes: 625×407,
950×618 and 1213× 789 pixels (reducing the original map size). As expected, increasing the number
of nodes raises the convergence time, which grows almost exponentially for N≤ 90, but linearly for
larger network sizes. Furthermore, results for N > 80 have a higher variance in both scenarios.
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Figure 11 shows the results of the Pareto front of functions f1 and f2.
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Figure 11. Pareto front (in blue) of f1 (network sensing coverage) vs. f2 (network cost). Deployments
of Figure 12 in red.

The solver was executed 2040 times, from different initial positions, selected at random.
Figure 11 shows a subset of representative solutions of varying parameter θ. The blue line shows
the “best solutions”, in the sense that it is impossible to improve one of the goals without worsening
the other.
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(a)

(b)

(c)

Figure 12. Sensing coverage of TiO2 content in the Dionysius region of interest. (a) θ =

0.0025, f1/Γmax = 0.1608 and f2 = 4067; (b) θ = 0.05, f1/Γmax = 0.5282 and f2 = 14179;
(c) θ = 0.36, f1/Γmax = 0.8176 and f2 = 22607.

The result reveals that the Pareto front approach is useful. The solution shows the tradeoff
between cost and joint-coverage of the network. Cost is related to the energy consumed by the
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network during lunar nights (periods without direct sun exposure). Therefore, mission planners
could compute battery consumption during lunar nights, combine this with other costs (variables
of the mission), such as battery weight, performance, durability, and so on, and obtain optimal
positions in terms of expected 3He abundance. Besides, the Pareto front results are linear, showing
that there is an inverse proportional relationship between both optima magnitudes. Finally,
Figure 12 also displays three sensor deployments in our region of interest for three choices of
θ = (0.0025, 0.05, 0.36) matching the red points on the Pareto frontier represented in Figure 11. This
shows how several “optimal” solutions may behave distinctly, depending on the prioritized variable
in the tradeoff balance.

6. Conclusions

We have developed a methodology based on the ACOR metaheuristic for sensor node placement
and tested this algorithm against the FDP heuristic. ACOR outperformed FDP in all of the tests. The
time consumed by the algorithm scales well with the size of the search space (number of nodes and
map size).

We have also evaluated a concept mission for the deployment of the proposal in a lunar scenario.
In the case of relatively large network sizes (most likely in missions of this kind), efficiency ρ was also
superior with our ACOR-based algorithm.

The methodology developed in this paper can be easily extended to other complex
placement problems, for example by including mass limitations or deployment time in the
multi-objective function.
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