Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wind Tunnel Facility
2.2. Specifications of UASS
2.2.1. DJI Matrice 600
2.2.2. Spray System Design
2.3. Experimental Campaign
2.3.1. Methodology
2.3.2. Data Analysis
- The binary image is block-processed, as shown in Figure 7(2) and Figure 8(2). They are divided into small squares, and the number of white pixels corresponding to droplets is counted. If the percentage of these white pixels is greater than a fixed threshold, the pixel concerned is considered part of the spray cone. Otherwise, it is discarded and colored completely black. This procedure eliminates stray droplets and determines all the points needed for trajectory fitting. Then, the images are divided into horizontal rows, and the rightmost and leftmost white pixels of each row are memorized as the limits of the spray cone. The process is repeated by columns, and the pixels that verify both conditions are considered to be in the contour.
2.4. Numerical Methods
3. Experimental Results
4. CFD Simulation: Hollowcone Nozzle
4.1. Pressure-Swirl Atomizers
4.1.1. Droplet Diameter Distribution
4.1.2. Cone Angle
4.1.3. Film Velocity and Tangential Velocity
4.2. Wind Effects on the Hollowcone Spray
4.3. Experimental Validation
5. Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAS | unmanned aerial system |
UASS | unmanned aerial spraying system |
CFD | computational fluid dynamics |
PA | precision agriculture |
DPM | dispersed phase model |
LED | light-emitting diode |
VOF | volume of fluid |
SEASTAR-WT | Sustainable Energy Applied Sciences, Technology, and Advanced Research Wind |
Tunnel | |
OPMM | optical precision measuring machine |
MTOW | maximum take-off weight |
RGB | red, green, blue |
URANS | unsteady Reynolds-averaged Navier–Stokes |
AMI | arbitrary mesh interface |
AMR | adaptive mesh refinement |
CSF | continuum surface force |
CFL | Courant–Friedrich–Levy |
CAD | computer-aided design |
PPP | plant protection product |
References
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Idoje, G.; Dagiuklas, T.; Iqbal, M. Survey for smart farming technologies: Challenges and issues. Comput. Electr. Eng. 2021, 92, 107104. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Bloise, N.; Carreño Ruiz, M.; D’Ambrosio, D.; Guglieri, G. Preliminary design of a remotely piloted aircraft system for crop-spraying on vineyards. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- He, X. Rapid development of unmanned aerial vehicles (UAV) for plant protection and application technology in China. Outlooks Pest Manag. 2018, 29, 162–167. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Chen, S.; Lan, Y.; Zhou, Z.; Ouyang, F.; Wang, G.; Huang, X.; Deng, X.; Cheng, S. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Qiu, B.; Dong, X.; Ma, J.; Huang, X.; Ahmed, S.; Chandio, F.A. Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Comput. Electron. Agric. 2020, 172, 105350. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W.C.; Han, X.; Chen, S.; Lan, Y. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737, 139793. [Google Scholar] [CrossRef]
- Faiçal, B.S.; Freitas, H.; Gomes, P.H.; Mano, L.Y.; Pessin, G.; de Carvalho, A.C.; Krishnamachari, B.; Ueyama, J. An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 2017, 138, 210–223. [Google Scholar] [CrossRef]
- Scagnellato, L.; Lecce, M.; Bloise, N.; Carreño Ruiz, M.; Capello, E.; Guglieri, G. Adaptive path planning for spraying UAS in vineyard under variable wind condition. In Proceedings of the ICAS 2022, Stockholm, Sweden, 4–9 September 2022. [Google Scholar]
- Meng, Y.; Su, J.; Song, J.; Chen, W.H.; Lan, Y. Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution. Comput. Electron. Agric. 2020, 170, 105282. [Google Scholar] [CrossRef]
- Martinez-Guanter, J.; Agüera, P.; Agüera, J.; Pérez-Ruiz, M. Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards. Precis. Agric. 2020, 21, 226–243. [Google Scholar] [CrossRef]
- Wang, C.; Herbst, A.; Zeng, A.; Wongsuk, S.; Qiao, B.; Qi, P.; Bonds, J.; Overbeck, V.; Yang, Y.; Gao, W.; et al. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Sci. Total Environ. 2021, 777, 146181. [Google Scholar] [CrossRef]
- Li, X.; Giles, D.K.; Niederholzer, F.J.; Andaloro, J.T.; Lang, E.B.; Watson, L.J. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Manag. Sci. 2021, 77, 527–537. [Google Scholar] [CrossRef]
- Sarri, D.; Martelloni, L.; Rimediotti, M.; Lisci, R.; Lombardo, S.; Vieri, M. Testing a multi-rotor unmanned aerial vehicle for spray application in high slope terraced vineyard. J. Agric. Eng. 2019, 50, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Biglia, A.; Grella, M.; Bloise, N.; Comba, L.; Mozzanini, E.; Sopegno, A.; Pittarello, M.; Dicembrini, E.; Alcatrão, L.E.; Guglieri, G.; et al. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Sci. Total Environ. 2022, 845, 157292. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, P.; Xu, W.; Chen, S.; Han, Y.; Lan, Y.; Wang, G. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution. Biosyst. Eng. 2022, 216, 32–45. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, S.; Wang, G.; Lan, Y. Drift Evaluation of a Quadrotor Unmanned Aerial Vehicle (UAV) Sprayer: Effect of Liquid Pressure and Wind Speed on Drift Potential Based on Wind Tunnel Test. Appl. Sci. 2021, 11, 7258. [Google Scholar] [CrossRef]
- Grant, S.; Perine, J.; Abi-Akar, F.; Lane, T.; Kent, B.; Mohler, C.; Scott, C.; Ritter, A. A Wind-Tunnel Assessment of Parameters That May Impact Spray Drift during UAV Pesticide Application. Drones 2022, 6, 204. [Google Scholar] [CrossRef]
- Chen, P.; Douzals, J.P.; Lan, Y.; Cotteux, E.; Delpuech, X.; Pouxviel, G.; Zhan, Y. Characteristics of unmanned aerial spraying systems and related spray drift: A review. Front. Plant Sci. 2022, 2726. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, L.; Wu, Y.; Musiu, E.M.; Cheng, Z.; Wang, P. Numerical simulation of airflow field from a six–rotor plant protection drone using lattice Boltzmann method. Biosyst. Eng. 2020, 197, 336–351. [Google Scholar] [CrossRef]
- Yang, F.; Xue, X.; Cai, C.; Sun, Z.; Zhou, Q. Numerical simulation and analysis on spray drift movement of multirotor plant protection unmanned aerial vehicle. Energies 2018, 11, 2399. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.; Han, J.; Ning, Z.; Lan, Y.; Yin, X.; Zhang, J.; Ge, Y. Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds. Comput. Electron. Agric. 2019, 166, 105036. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Hou, Q.; Wang, Z.; Lan, Y.; Wang, S. Numerical verification on influence of multi-feature parameters to the downwash airflow field and operation effect of a six-rotor agricultural UAV in flight. Comput. Electron. Agric. 2021, 190, 106425. [Google Scholar] [CrossRef]
- Bloise, N.; Carreño Ruiz, M.; D’Ambrosio, D.; Guglieri, G. Wind Tunnel Testing of Remotely Piloted Aircraft Systems for Precision Crop-Spraying Applications. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 378–383. [Google Scholar]
- Bloise, N.; Carreño Ruiz, M.; Mai, E.; D’Ambrosio, D.; Guglieri, G. Analysis and Design of Unmanned Aerial Systems for Precision Agriculture applications on Vineyards. In Proceedings of the EUCASS 2022, Lille, France, 3–8 July 2022. [Google Scholar]
- Di Martino, M.; Ahirwal, D.; Maffettone, P.L. Three-dimensional computational fluid dynamics simulation of the hollow-cone spray process: The stability of the conical liquid sheet. Phys. Fluids 2021, 33, 063301. [Google Scholar] [CrossRef]
- Laurila, E.; Roenby, J.; Maakala, V.; Peltonen, P.; Kahila, H.; Vuorinen, V. Analysis of viscous fluid flow in a pressure-swirl atomizer using large-eddy simulation. Int. J. Multiph. Flow 2019, 113, 371–388. [Google Scholar] [CrossRef]
- Gerboni, R.; Ledda, G.; Moscatello, A.; Uggenti, A.C.; Carpignano, A. Fluid-Dynamic Calibration of an Atmospheric Wind Tunnel Applied to Test Offshore Infrastructures. In Proceedings of the OMC Med Energy Conference and Exhibition, Ravenna, Italy, 28–30 September2021; OnePetro: Richardson, TX, USA, 2021. [Google Scholar]
- Siemens PLM Software Inc. STAR-CCM+ User Guide Version 14.06; Siemens PLM Software Inc.: Plano, TX, USA, 2019. [Google Scholar]
- Carreño Ruiz, M.; Scanavino, M.; D’Ambrosio, D.; Guglieri, G.; Vilardi, A. Experimental and numerical analysis of multicopter rotor aerodynamics. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; p. 2539. [Google Scholar]
- Carreño Ruiz, M.; Manavella, A.; D’Ambrosio, D. Numerical and experimental validation and comparison of reduced order models for small scale rotor hovering performance prediction. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 24–26 October 2022; p. 0154. [Google Scholar]
- Carreño Ruiz, M.; Scanavino, M.; D’Ambrosio, D.; Guglieri, G.; Vilardi, A. Experimental and numerical analysis of hovering multicopter performance in low-Reynolds number conditions. Aerosp. Sci. Technol. 2022, 128, 107777. [Google Scholar] [CrossRef]
- Spalart, P.; Allmaras, S. A one-equation turbulence model for aerodynamic flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992. [Google Scholar]
- Schiller, L. Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Vereines Dtsch. Inge. 1933, 77, 318–321. [Google Scholar]
- Sommerfeld, M. Theoretical and experimental modelling of particulate flows. VKI Lect. Ser. 2000, 6, 3–7. [Google Scholar]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; McDonell, V.G. Atomization and Sprays. CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Akima, H. A new method of interpolation and smooth curve fitting based on local procedures. J. ACM (JACM) 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Ventura Diaz, P.; Yoon, S. High-Fidelity Simulations of a Quadrotor Vehicle for Urban Air Mobility. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0152. [Google Scholar]
Parameter Description | Value |
---|---|
Wheelbase | 1133 mm |
Rotor diameter | 381 mm |
Rotor pitch | 127 mm |
Number of rotors | 6 |
Brushless motor | DJI 6010 |
TEST I.D. | Wind Speed (m·s) | Nozzle Type | Motor Speed | Pressure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | # | 0 | 2 | 3 | HCI8002 | AFC11002 | 0 | Idle | Max | 2 bar | 3 bar |
HCI_v0_0_2 | 1 | X | X | X | X | ||||||
HCI_v0_I_2 | 2 | X | X | X | X | ||||||
HCI_v0_T_2 | 3 | X | X | X | X | ||||||
HCI_v2_0_2 | 4 | X | X | X | X | ||||||
HCI_v2_I_2 | 5 | X | X | X | X | ||||||
HCI_v2_T_2 | 6 | X | X | X | X | ||||||
HCI_v3_0_2 | 7 | X | X | X | X | ||||||
HCI_v3_I_2 | 8 | X | X | X | X | ||||||
HCI_v3_T_2 | 9 | X | X | X | X | ||||||
AFC_v0_0_2 | 10 | X | X | X | X | ||||||
AFC_v0_I_2 | 11 | X | X | X | X | ||||||
AFC_v0_T_2 | 12 | X | X | X | X | ||||||
AFC_v2_0_2 | 13 | X | X | X | X | ||||||
AFC_v2_I_2 | 14 | X | X | X | X | ||||||
AFC_v2_T_2 | 15 | X | X | X | X | ||||||
AFC_v3_0_2 | 16 | X | X | X | X | ||||||
AFC_v3_I_2 | 17 | X | X | X | X | ||||||
AFC_v3_T_2 | 18 | X | X | X | X | ||||||
HCI_v0_0_3 | 19 | X | X | X | X | ||||||
HCI_v0_I_3 | 20 | X | X | X | X | ||||||
HCI_v0_T_3 | 21 | X | X | X | X | ||||||
AFC_v0_0_3 | 22 | X | X | X | X | ||||||
AFC_v0_I_3 | 23 | X | X | X | X | ||||||
AFC_v0_T_3 | 24 | X | X | X | X |
ARAG–HCI8002 | |
---|---|
Pressure | 3 bar |
Volume flow rate | 0.8 L min |
Droplet size | fine |
Simulation | Test I.D. | Wind Speed (m·s) | Nozzle Type | Motor Speed | Pressure |
---|---|---|---|---|---|
1 | HCI_v2_0_2 | 2 | HCI8002 | 0 | 2 bar |
2 | HCI_v2_T_2 | 2 | HCI8002 | 5100 rpm | 2 bar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreño Ruiz, M.; Bloise, N.; Guglieri, G.; D’Ambrosio, D. Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight. Drones 2022, 6, 329. https://doi.org/10.3390/drones6110329
Carreño Ruiz M, Bloise N, Guglieri G, D’Ambrosio D. Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight. Drones. 2022; 6(11):329. https://doi.org/10.3390/drones6110329
Chicago/Turabian StyleCarreño Ruiz, Manuel, Nicoletta Bloise, Giorgio Guglieri, and Domenic D’Ambrosio. 2022. "Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight" Drones 6, no. 11: 329. https://doi.org/10.3390/drones6110329
APA StyleCarreño Ruiz, M., Bloise, N., Guglieri, G., & D’Ambrosio, D. (2022). Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight. Drones, 6(11), 329. https://doi.org/10.3390/drones6110329