Effects of the Spatial Resolution of UAV Images on the Prediction and Transferability of Nitrogen Content Model for Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experiment Design
2.2. Data Collection and Pre-Processing
2.2.1. UAV Remote Sensing Image Data Acquisition and Pre-Processing
2.2.2. Collection of Winter Wheat Plant Samples and Determination of Nitrogen Content
2.3. Vegetation Indices Selection
2.4. Image Texture Features Extraction
2.5. Feature Selection and Machine Learning Modeling
2.5.1. Competitive Adaptive Reweighted Sampling Method
2.5.2. Random Forest
- (i)
- Draw the training dataset from the original sample dataset. Each round draws n training samples (with put-back sampling) from the original sample dataset using the Bootstrap method. A total of k rounds of extraction are performed to obtain k training datasets.
- (ii)
- One model is obtained using one training dataset at a time, and a total of k models are obtained for k training sets.
- (iii)
- For the classification problem: the k models obtained in the previous step are used to obtain the classification results by voting, and the mean value of the above models is calculated as the final result.
2.5.3. Model Performance Evaluation
2.5.4. Evaluation of the Effect of Image Resolution on Model Transferability
3. Results and Analysis
3.1. Correlation Analysis between Spectral Features of Different Resolution Images and Nitrogen Content in Winter Wheat Plants
3.2. Correlation Analysis between Texture Features of Different Resolution Images and Nitrogen Content in Winter Wheat Plants
3.3. Sensitive Feature Optimization for Plant Nitrogen Content Prediction Models
3.4. Nitrogen Content Prediction of Winter Wheat Plants at Different Image Spatial Resolutions Based on the Preferred Features
3.5. Upscaling Plant Nitrogen Content Prediction Models
3.6. Downscaling Plant Nitrogen Content Prediction Models
4. Discussion
4.1. Transferability of Models as Affected by Image Resolutions
4.2. Effect of Image Resolutions on Spectral and Texture Features
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Lu, Z.G.; Dai, T.B.; Jiang, D.; Jing, Q.; Wu, Z.G.; Cao, W.X. Effects of nitrogen strategies on population quality index and grain yield & quality in weak-gluten wheat. Acta Agron. Sin. 2007, 33, 590–597. (In Chinese) [Google Scholar]
- Jiang, J.; Atkinson, P.M.; Zhang, J.; Lu, R.; Zhou, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. Eur. J. Agron. 2022, 138, 126537. [Google Scholar] [CrossRef]
- Walsh, O.S.; Shafian, S.; Marshall, J.M.; Jackson, C.; Mcclintick-Chess, J.R.; Blanscet, S.M.; Swoboda, K.; Thompson, C.; Belmont, K.M.; Walsh, W.L. Assessment of UAV based vegetation indices for nitrogen concentration estimation in spring wheat. Adv. Remote Sens. 2018, 77, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Zheng, H.; Zhou, K.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Estimation of area-and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis. Plant Methods 2018, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, X.P.; Jia, L.L. Study on nitrogen nutrition dynamic diagnostic parameters of summer maize based on visible light remote sensing. Plant Nutr. Ferti. Sci. 2018, 24, 261–269. (In Chinese) [Google Scholar]
- Montgomery, K.; Henry, J.B.; Vann, M.C.; Whipker, B.E.; Huseth, A.S.; Mitasova, H. Measures of canopy structure from low-cost uas for monitoring crop nutrient status. Drones 2020, 4, 36. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, J.; Wang, X.; Cheng, T.; Yao, X. Estimating the leaf nitrogen content with a new feature extracted from the ultra-high spectral and spatial resolution images in wheat. Remote Sens. 2021, 13, 739. [Google Scholar] [CrossRef]
- Lu, N.; Wu, Y.; Zheng, H.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. An assessment of multi-view spectral information from UAV-based color-infrared images for improved estimation of nitrogen nutrition status in winter wheat. Precis. Agric. 2022, 23, 1653–1674. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CC-CI). Field Crops. Res. 2010, 116, 318. [Google Scholar] [CrossRef]
- Zhao, C.J. The development of agricultural remote sensing research and application. Trans. Chin. Soc. Agric. Mach. 2014, 45, 277–293. (In Chinese) [Google Scholar]
- Wang, L.A.; Zhou, X.D.; Zhu, X.K.; Guo, W.S. Estimation of leaf nitrogen concentration in wheat using the MK-SVR algorithm and satellite remote sensing data. Comput. Electron. Agric. 2017, 140, 327. [Google Scholar] [CrossRef]
- Sabzi, S.; Pourdarbani, R.; Rohban, M.H.; García-Mateos, G.; Arribas, J.I. Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions. Chemometr. Intell. Lab. 2021, 217, 104404. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Fairbairn, D.; Li, N.; Li, B.; Feng, H.; Yang, G. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Comput. Electron. Agric. 2019, 162, 174–182. [Google Scholar] [CrossRef]
- Colorado, J.D.; Cera-bornacelli, N.; Caldas, J.S.; Petro, E.; Jaramillo-Botero, A. Estimation of nitrogen in rice crops from UAV-captured images. Remote Sens. 2020, 12, 3396. [Google Scholar] [CrossRef]
- Messina, G.; Praticò, S.; Badagliacca, G.; Di Fazio, S.; Monti, M.; Modica, G. Monitoring onion crop “cipolla rossa di tropea calabria igp” growth and yield response to varying nitrogen fertilizer application rates using UAV imagery. Drones 2021, 5, 61. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Zhao, G.X.; Su, B.W.; Chen, X.N.; Zhang, S.M. Decision model of variable nitrogen fertilizer in winter wheat returning green stage based on UAV multi-spectral images. Spectrosc. Spect. Anal. 2019, 39, 3599–3605. [Google Scholar]
- Liu, C.H.; Ma, W.Y.; Chen, Z.C.; Wang, C.Y.; Lu, J.J.; Yue, X.Z.; Wang, Z.; Fang, Z.; Miao, Y.X. Nutrient nutrition diagnosis of winter wheat based on remote sensing of unmanned aerial vehicle. J. Henan Univ. Technol. 2018, 37, 45–53. (In Chinese) [Google Scholar]
- Zhang, J.; Cheng, T.; Shi, L.; Wang, W.; Niu, Z.; Guo, W.; Ma, X. Combining spectral and texture features of UAV hyperspectral images for leaf nitrogen content monitoring in winter wheat. Int. J. Remote Sens. 2022, 43, 2335–2356. [Google Scholar] [CrossRef]
- Wang, Y.N.; Li, F.L.; Wang, W.D.; Chen, X.K.; Chang, Q.R. Monitoring of winter wheat nitrogen nutrition based on UAV hyper-spectral images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 31–39. (In Chinese) [Google Scholar]
- Li, H.J.; Li, J.Z.; Lei, Y.P.; Zhang, Y.M. Diagnosis of nitrogen nutrition of winter wheat and summer corn using images from digital camera equipped on unmanned aerial vehicle. Chin. J. Eco-Agric. 2017, 25, 1832–1841. (In Chinese) [Google Scholar]
- Jia, D.; Chen, P.F. Effect of low altitude UAV image resolution on inversion of winter wheat nitrogen concentration. Trans. Chin. Soc. Agric. Mach. 2020, 51, 164–169. (In Chinese) [Google Scholar]
- Zhang, X.W.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; et al. Combining spectral and texture features of uas-based multispectral images for maize leaf area index estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Yang, G.J.; Li, Z.H.; Song, X.Y.; Li, Z.H.; Xu, X.G.; Wang, P.; Zhao, C.J. Winter wheat nitrogen status estimation using UAV-Based RGB imagery and Gaussian processes regression. Remote Sens. 2020, 12, 3778. [Google Scholar] [CrossRef]
- Zheng, H.B.; Ma, J.F.; Zhou, M.; Li, D.; Yao, X.; Cao, W.X.; Zhu, Y.; Cheng, T. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from Unmanned Aerial Vehicle (UAV) multispectral imagery. Remote Sens. 2020, 12, 957. [Google Scholar] [CrossRef] [Green Version]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.; Hank, T.B.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. 2020, 92, 102174. [Google Scholar] [CrossRef]
- Shi, P.H.; Wang, Y.; Xu, J.M.; Zhao, Y.L.; Yang, B.L.; Yuan, Z.M.; Sun, Q.H. Rice nitrogen nutrition estimation with RGB images and machine learning methods. Comput. Electron. Agric. 2021, 180, 105860. [Google Scholar] [CrossRef]
- Li, J.M.; Chen, X.Q.; Yang, Q.; Shi, L.S. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data. Acta Agron Sin. 2021, 47, 1342–1350. (In Chinese) [Google Scholar]
- Qiu, Z.C.; Ma, F.; Li, Z.W.; Xu, X.B.; Ge, H.X.; Du, C. Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms. Comput. Electron. Agric. 2021, 189, 106421. [Google Scholar] [CrossRef]
- Zhang, S.H.; Duan, J.Z.; He, L.; Jing, Y.H.; Schulthess, U.C.; Lashkari, A.; Guo, T.C.; Wang, Y.H.; Feng, W. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion. Acta Agron. Sin. 2022, 48, 1746–1760. (In Chinese) [Google Scholar]
- Pozo, S.D.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; Felipe-García, B. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System. Remote Sens. 2014, 6, 1918–1937. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2008. [Google Scholar]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Xiao, X.M.; He, L.; Salas, W.; Li, C.S.; Moore, B.; Zhao, R.; Frolking, S.; Boles, S. Quantitative relationships between field-measured leaf area index and vegetation index derived from vegetation images for paddy rice fields. Int. J. Remote Sens. 2002, 23, 3595–3604. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Lao, C.C.; Yang, Y.L.; Zhang, Z.T.; Chen, H.Y.; Chen, Y.W.; Chen, J.Y.; Ning, J.; Yang, N. Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices. Agric. Water Manag. 2021, 256, 107076. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.; Pereira, D.R.; Moriya, É.A.; Imai, N.N.; Matsubara, E.T.; Estrabis, N.; Souza, M.D.; Junior, J.M.; Gonçalves, W.N.; et al. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sens. 2019, 11, 2925. [Google Scholar]
- Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75–92. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring the Vernal Advancement of Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Type III. Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; p. 371.
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rondeaux, G.; Baret, F.; Steven, M. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.S.; Rundquist, D.; Arkebauer, T.J. Remote estimation of canopy content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Erunova, M.; Pisman, T.I.; Shevyrnogov, A.P. The technology for detecting weeds in agricultural crops based on vegetation index VARI (PlanetScope). J. Sib. Fed. Univ. Eng. Technol. 2021, 14, 347–353. [Google Scholar] [CrossRef]
- Lamm, R.D.; Slaughter, D.C.; Giles, D.K. Precision weed control system for cotton. J. Electron. Packag. Trans. ASME 2002, 45, 231–238. [Google Scholar]
- Zhou, J.; Mou, H.; Zhou, J.; Ali, M.L.; Ye, H.; Chen, P.; Nguyen, H.T. Qualification of soybean responses to flooding stress using UAV-based imagery and deep learning. Plant Phenomics 2021, 2021, 9892570. [Google Scholar] [CrossRef]
- Aouat, S.; Ait-Hammi, I.; Hamouchene, I. A new approach for texture segmentation based on the Gray Level Co-occurrence Matrix. Multimed. Tools Appl. 2021, 80, 24027–24052. [Google Scholar] [CrossRef]
- Xia, Z.; Yang, J.; Wang, J.; Wang, S.; Liu, Y. Optimizing rice near-infrared models using fractional order savitzky–golay derivation (FOSGD) combined with competitive adaptive reweighted sampling (CARS). Appl. Spectrosc. 2020, 74, 417–426. [Google Scholar] [CrossRef]
- Rose, D.C.; Mair, J.F.; Garrahan, J.P. A reinforcement learning approach to rare trajectory sampling. New J. Phys. 2021, 23, 013013. [Google Scholar] [CrossRef]
- Jeung, M.; Baek, S.; Beom, J.; Cho, K.H.; Her, Y.; Yoon, K. Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. J. Hydrol. 2019, 575, 1099–1110. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Cañada, M.C.; Moreno, A.M.G.; Leal-Murillo, J.R.; González-Dugo, M.P.; Oar, B.A.; Gómez-Giráldez, P.J.; Fernández-Rebollo, P. Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by random forest and pls regressions. Comput. Electron. Agric. 2022, 192, 106614. [Google Scholar] [CrossRef]
- Alabi, T.R.; Abebe, A.T.; Chigeza, G.; Fowobaje, K.R. Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa. Remote Sens. Appl. 2022, 27, 100782. [Google Scholar] [CrossRef]
- Wang, L.G.; Zheng, G.Q.; Guo, Y.; He, J.; Cheng, Y.Z. Prediction of winter wheat yield based on fusing multi-source spatio-temporal data. Trans. Chin. Soc. Agric. Mach. 2022, 53, 198–204, 458. (In Chinese) [Google Scholar]
- Guo, Y.; Ji, W.J.; Wu, H.H.; Shi, Z. Estimation and mapping of soil organic matter based on Vis-NIR reflectance spectroscopy. Spectrosc. Spect. Anal. 2013, 33, 1135–1140. [Google Scholar]
- Wang, J.D.; Chen, Y.Q. An Introduction to Transfer Learning; Publishing House of Electronics Industry: Beijing, China, 2022. [Google Scholar]
- Stow, D.; Nichol, C.J.; Wade, T.; Assmann, J.J.; Simpson, G.; Helfter, C. Illumination geometry and flying height influence surface reflectance and NDVI derived from multispectral UAS imagery. Drones 2019, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Geipel, J.; Link, J.; Claupein, W. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens. 2014, 6, 10335–10355. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.J.; Cheema, M.J.; Hussain, S.; Shaheen, A.; Aslam, B.; Liu, C.; Ali, A. Assessment of optimal flying height and timing using high-resolution unmanned aerial vehicle images in precision agriculture. Int. J. Environ. Sci. Technol. 2021, 19, 2703–2720. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Langensiepen, M.; Gaiser, T.; Webber, H.; Ahrends, H.; Hueging, H.; Ewert, F. Winter wheat and maize under varying soil moisture: From leaf to canopy. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. EGU21-11716. [Google Scholar]
- Mulugeta Aneley, G.; Haas, M.; Köhl, K. LIDAR-based phenotyping for drought response and drought tolerance in potato. Potato Res. 2022. [Google Scholar] [CrossRef]
- Lu, Y.L.; Li, S.K.; Bai, Y.L.; Xie, R.Z.; Gong, Y.M. Spectral red edge parametric variation and correlation analysis with N content in winter wheat. Remote Sens. Techn. Appl. 2007, 1, 1–7. (In Chinese) [Google Scholar]
- Li, Q.; Gao, M.F.; Zhao, L.L. Ground hyper-spectral remote-sensing monitoring of wheat water stress during different growing stages. Agronmy 2022, 12, 2267. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zhang, X.Y.; Chen, S.Y.; Chen, S.L.; Sun, Z.S. Study on characters in winter wheat canopy structure under different soil water stress. J. Irrig. Drain. 2005, 24, 31–34. (In Chinese) [Google Scholar]
- Jiang, Q.; Xu, L.; Sun, S.; Wang, M.; Xiao, H. Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms–A case study in the Miyun Reservoir, China. Ecol. Indic. 2021, 124, 107356. [Google Scholar]
- Liu, C.; Yang, G.J.; Li, Z.H.; Tang, F.Q.; Wang, J.W.; Zhang, C.L.; Zhang, L.Y. Estimation of winter wheat biomass based on spectral information and texture information of UAV. Sci. Agric. Sin. 2018, 51, 3060–3073. (In Chinese) [Google Scholar]
- Zhang, Y.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.; Li, F.; Chang, Q. Combining spectral and textural information from UAV RGB images for leaf area index monitoring in Kiwifruit Orchard. Remote Sens. 2022, 14, 1063. [Google Scholar] [CrossRef]
Flight Height (m) | Image Spatial Resolution (m) | Flying Time (s) | Number of Images (Sheet) | Pre-Processing (h) |
---|---|---|---|---|
30 | 0.01 | 566 | 235 | 6.3 |
60 | 0.02 | 155 | 95 | 3.4 |
100 | 0.05 | 55 | 20 | 0.5 |
Vegetation Index | Formula | References |
---|---|---|
Normalized Difference Vegetation Index, NDVI | (RNir − RRed)/(RNir + RRed) | [41] |
Renormalized Difference Vegetation Index for Red, RDVI | (RNir − RRed)(RNir + RRed)0.5 | [41] |
Renormalized Difference Vegetation Index for Rededge, RERDVI | (RNir − RRededge)/(RNir + RRededge) | [42] |
Normalized Blue–Green Band Difference Vegetation Index, GBNDVI | RNir − (RGreen + RBlue) × RNir + (RGreen + RBlue) | [42] |
Chlorophyll Absorption Ratio Index, CARI | (RRededge − RRed) − 0.2 × (RRededge + RRed) | [43] |
Normalized Blue–Green Difference Index, NGBDI | (RBlue)/(RGreen + RBlue) | [44] |
Ratio Vegetation Index, RVI | RNir/RRed | [45] |
Optimized Soil Adjusted Vegetation Index, OSAVI | (RNir − RRed)/(RNir + RRed + 0.16) | [43] |
Excessive Green Index, EXG | 2RGreen − RRed − RBlue | [46] |
Vegetation Index | Image Spatial Resolution (m) | ||
---|---|---|---|
0.01 | 0.02 | 0.05 | |
B | −0.82 ** | −0.79 ** | −0.75 ** |
G | −0.81 ** | −0.80 ** | −0.77 ** |
R | −0.83 ** | −0.81 ** | −0.79 ** |
Rededge | −0.39 ** | −0.47 ** | −0.42 ** |
Nir | 0.95 ** | 0.92 * | 0.94 ** |
NDVI | 0.80 ** | 0.77 ** | 0.82 ** |
RDVI | 0.85 ** | 0.81 ** | 0.87 ** |
RERDVI | 0.80 ** | 0.79 ** | 0.82 ** |
GBNDVI | 0.81 ** | 0.78 ** | 0.83 ** |
CARI | 0.69 ** | 0.58 * | 0.65 ** |
NGBDI | 0.47 ** | −0.38 * | −0.48 * |
RVI | 0.76 ** | 0.76 ** | 0.78 ** |
OSAVI | 0.82 ** | 0.79 ** | 0.85 ** |
EXG | −0.59 ** | −0.65 ** | −0.66 ** |
Image Spatial Resolution (m) | Band | Mean | Con | Sm | Var | Cor | Dis | Hom | Ent |
---|---|---|---|---|---|---|---|---|---|
0.01 | B | 0.35 ** | −0.59 ** | 0.51 ** | −0.10 * | 0.17 * | −0.56 ** | 0.61 ** | −0.20 * |
G | 0.22 ** | −0.35 * | −0.34 * | −0.07 | −0.48 ** | 0.11 * | 0.27 * | 0.39 ** | |
R | 0.12 ** | −0.77 ** | 0.72 ** | −0.62 ** | 0.15 * | −0.48 ** | 0.71 ** | −0.39 * | |
Rededge | 0.44 ** | 0.23 * | 0.43 ** | 0.20 ** | 0.24 ** | 0.42 ** | 0.18 ** | 0.52 ** | |
Nir | 0.87 ** | 0.71 * | 0.41 ** | 0.71 * | 0.43 * | 0.73 * | 0.55 ** | 0.61 ** | |
0.02 | B | 0.38 ** | −0.54 ** | 0.49 * | 0.13 * | 0.11 * | −0.41 * | 0.54 ** | −0.21 * |
G | 0.18 ** | −0.33 * | −0.26 * | −0.31 * | −0.45 ** | −0.01 | 0.40 * | 0.24 * | |
R | 0.19 ** | −0.69 ** | 0.77 ** | −0.75 ** | 0.23 * | −0.54 ** | 0.72 ** | −0.54 * | |
Rededge | 0.43 ** | −0.08 * | 0.58 ** | −0.37 * | −0.10 * | 0.05 * | 0.52 ** | 0.32 ** | |
Nir | 0.87 ** | 0.32 ** | 0.49 * | 0.30 * | 0.21 * | 0.36 * | 0.47 ** | 0.52 * | |
0.05 | B | 0.41 ** | −0.56 ** | 0.50 * | 0.33 * | 0.13 * | −0.36 * | 0.53 * | −0.16 * |
G | 0.22 ** | −0.33 * | 0.05 * | −0.40 * | −0.40 ** | −0.34 * | 0.55 * | −0.04 * | |
R | 0.19 ** | −0.66 ** | 0.65 ** | −0.71 * | 0.31 * | −0.51 ** | 0.76 ** | −0.47 * | |
Rededge | 0.42 ** | −0.41 * | 0.63 ** | −0.58 ** | −0.02 | −0.34 ** | 0.73 ** | 0.17 * | |
Nir | 0.86 ** | −0.13 * | 0.56 ** | −0.16 * | 0.30 * | −0.15 * | 0.68 ** | 0.45 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; He, J.; Huang, J.; Jing, Y.; Xu, S.; Wang, L.; Li, S.; Zheng, G. Effects of the Spatial Resolution of UAV Images on the Prediction and Transferability of Nitrogen Content Model for Winter Wheat. Drones 2022, 6, 299. https://doi.org/10.3390/drones6100299
Guo Y, He J, Huang J, Jing Y, Xu S, Wang L, Li S, Zheng G. Effects of the Spatial Resolution of UAV Images on the Prediction and Transferability of Nitrogen Content Model for Winter Wheat. Drones. 2022; 6(10):299. https://doi.org/10.3390/drones6100299
Chicago/Turabian StyleGuo, Yan, Jia He, Jingyi Huang, Yuhang Jing, Shaobo Xu, Laigang Wang, Shimin Li, and Guoqing Zheng. 2022. "Effects of the Spatial Resolution of UAV Images on the Prediction and Transferability of Nitrogen Content Model for Winter Wheat" Drones 6, no. 10: 299. https://doi.org/10.3390/drones6100299
APA StyleGuo, Y., He, J., Huang, J., Jing, Y., Xu, S., Wang, L., Li, S., & Zheng, G. (2022). Effects of the Spatial Resolution of UAV Images on the Prediction and Transferability of Nitrogen Content Model for Winter Wheat. Drones, 6(10), 299. https://doi.org/10.3390/drones6100299