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Abstract: This paper evaluates the potential of integrating textural and spectral information from
unmanned aerial vehicle (UAV)-based multispectral imagery for improving the quantification of
nitrogen (N) status in rice crops. Vegetation indices (VIs), normalized difference texture indices
(NDTIs), and their combination were used to estimate four N nutrition parameters leaf nitrogen
concentration (LNC), leaf nitrogen accumulation (LNA), plant nitrogen concentration (PNC), and
plant nitrogen accumulation (PNA). Results demonstrated that the normalized difference red-edge
index (NDRE) performed best in estimating the N nutrition parameters among all the VI candidates.
The optimal texture indices had comparable performance in N nutrition parameters estimation as
compared to NDRE. Significant improvement for all N nutrition parameters could be obtained by
integrating VIs with NDTIs using multiple linear regression. While tested across years and growth
stages, the multivariate models also exhibited satisfactory estimation accuracy. For texture analysis,
texture metrics calculated in the direction D3 (perpendicular to the row orientation) are recommended
for monitoring row-planted crops. These findings indicate that the addition of textural information
derived from UAV multispectral imagery could reduce the effects of background materials and
saturation and enhance the N signals of rice canopies for the entire season.
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1. Introduction

As one of the most important staple crops around the world, rice (Oryza sativa L.) crop feeds
more than 50% of the world’s population. Nitrogen is the primary element for crop growth due to
the crucial impact on crop yield formulation and grain quality determination. Monitoring N status in
rice leaves or plants could provide valuable information for growth diagnosis [1] and precise field N
management [2], so as to improve the N use efficiency and reduce environmental pollution.

Crop N status is often represented by LNC and PNC in precision agriculture. However, the
majority of studies reported that it was difficult to quantify LNC and PNC precisely with the canopy
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reflectance data and N status monitoring was strongly influenced by growth stage [3,4]. Nitrogen
signals from rice leaves and plants captured by canopy spectra at early growth stages are weak, because
the background materials (e.g., soil, water) occupy a large proportion of the field of view and the
biomass of rice crops increases as the N concentration decreases due to the N dilution effect [5,6].
Since those negative influences could be reduced at reproductive stages with the stabilization of leaf
biomass [6], the N status is difficult to detect at early stages and could be estimated more accurately for
late stages. Zhou et al. [6] found that the LNC at vegetative stages (with low canopy coverage) should
be estimated with stage-specific regression models, and only the LNC at reproductive stages (with
high canopy coverage and even canopy closure) could be estimated with a common model. In contrast
to the influence of background materials for early stages, the low sensitivity of spectral signals to the
growth dynamics of dense canopies becomes another issue for the estimation of N concentration for
late stages (from booting to grain filling). Therefore, determining how to enhance N signals and build
suitable models for N status monitoring over the whole season remains to be addressed.

Other than spectral information, the textural information inherent in the UAV imagery has
recently been proved to have great potential in crop growth monitoring [7,8]. Image texture analysis
can be applied to the identification of image tonal variation through a function of local variance in
the images [9]. The texture metrics derived from spectral bands can characterize canopy structural
patterns and enhance the sensitivity of remotely sensed data to biophysical properties, especially at
dense canopy coverage conditions [10]. During the early growth period (from tillering to booting
stages) of rice crops, the leaves often exhibit remarkable variation in color as a result of N nutrition
consumption for vegetative development and the topdressing of N fertilizer [11,12]. These tonal
variations within and between crop canopies could be captured by texture metrics. Therefore, the
image-derived texture metrics have the potential to better characterize the N status variation at critical
growth stages. The availability of different data sources enables data fusion, i.e., the combination of
datasets from two or more data types with different characteristics [7]. Data fusion may allow a more
holistic interpretation of the relationship between remote sensing information and crop parameters.
For example, the fusion of spectral information and textural information from UAV imagery showed an
increased prediction performance for crop biomass [8]. Since the textural and spectral features respond
to the N status dynamics in different ways, the integration of their complementary information could
be useful for improving the estimation of N nutrition parameter across critical growth stages. The
performance of texture analysis depends on the choices of texture metrics, the spectral band used for
texture derivation, window size, and texture direction [13,14]. While the former three factors were well
studied for vegetation monitoring, the effect of texture direction has rarely been investigated. Previous
studies often conducted texture analysis with the default direction (45◦), because most of them focused
on naturally grown forests with disorderly distributed tress [7,15]. Others exercised with different
directions for naturally grown trees, but they did not explicitly provide the mechanism underlying the
direction choices [10,14,16]. Rice crops are mostly planted in rows and exhibit regular spatial patterns,
but how the texture direction affects the performance of derived textural information remains unclear.
Whether the performance of across-row texture metrics differs from that of along-row texture metrics
and whether those two directions outperform the default diagonal direction need to be investigated.

Therefore, our aims were (1) to determine the optimal texture metrics and texture indices from
UAV multispectral imagery for estimating rice N nutrition parameters, (2) to investigate the directional
effect of texture analysis on N status estimation for row-planted rice crops, and (3) to examine the
feasibility of integrating spectral and textural information in the improvement of N status monitoring.

2. Materials and Methods

2.1. Experimental Design

In 2015 and 2016, we conducted two field experiments in Rugao, Jiangsu Province, China (120◦45′E,
32◦16′N) [8]. In 2015, there were four N rates (0, 100, 200, and 300 kg N ha−1). The minimum and
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maximum N rates had at one density (22 × 104 plants ha−1) and the intermediate N rates had two
densities (13 × 104 plants ha−1 and 22 × 104 plants ha−1). The ratio of N fertilizer application was
4:1:3:2 for basal fertilizer before transplanting, tillering stage, jointing stage, and booting stage. In 2016,
there were three N rates (0, 150, and 300 kg N ha−1) and two densities (13 × 104 plants ha−1 and 22 ×
104 plants ha−1). The ratio of N fertilizer application was 4:2:2:2 for basal fertilizer before transplanting,
tillering stage, jointing stage, and booting stage. There were two rice cultivars, (Wuyunjing 24, V1) and
(Y Liangyou 1, V2). Each experiment had 36 plots (12 treatments with three replications) with 30 m2

(6 m × 5 m).

2.2. Ground Sampling and UAV Image Acquisition

The UAV campaigns and ground destructive samplings were taken at critical growth stages of
rice (Table 1). After the UAV campaign, three hills of rice plants were randomly harvested in each plot
and separated into different organs. All the samples were oven dried at 105 ◦C for 30 mins, followed
by drying at 80 ◦C, until a constant weight was reached. Then, they were weighed, ground, and
stored in plastic bags for laboratory chemical analysis. Aboveground biomass (AGB) was the total dry
weight of all plant organs per unit ground area. Total N concentrations (%) were determined with the
micro-Keldjahl analysis. The LNC and PNC were expressed on a dry weight basis (%), and LNA and
PNA were expressed as N mass per unit ground area (g m−2). The LNA (g m−2) was obtained through
multiplying LNC (%) by leaf dry biomass (LDB, t ha−1). The PNA (g m2) was obtained through
multiplying PNC (%) by AGB (t ha−1).

Table 1. Experimental designs and dates of data collection on the ground.

Year 2015 2016

N rate (kg ha−1) 0 (N0), 100 (N1), 200 (N2), 300 (N3) 0 (N0), 150 (N1), 300 (N2)

Planting density (plants ha−1) 13 × 104, 22 × 104 13 × 104, 22 × 104

UAV flight date 5 August, 14 August, 26 August, 9
September

6 August, 14 August, 28 August, 9
September

Sampling date 31 July, 15 August, 26 August, 10
September

6 August, 14 August, 28 August, 8
September

Growth stage Jointing, Early-booting, Late-booting,
Grain filling Jointing, Booting, Heading, Grain filling

In this study, we used an eight-rotor aircraft (Mikrokopter OktoXL) which had a maximum
payload capacity of 2.5 kg and a flight duration of 10−20 min, depending on the battery and actual
payload. A multispectral camera (Mini-MCA6; Tetracam, Inc., Chatsworth, CA, USA) was mounted
on the UAV to acquire images in this study (Table 1). The specification of this multispectral camera can
be found in Reference [17]. The UAV was flown at 100 m above ground level, resulting in a nominal
resolution of 0.054 m in the multispectral images. The camera was set to continuous data capture
at one frame per three seconds with a fixed aperture and exposure according to the light conditions.
Aerial images were saved in the camera memory card in a 10 bit RAW format.

The UAV campaigns were conducted under a clear sky and calm wind conditions between 11:00
and 13:30 (local time). After each flight, only one image that covered all 36 plots in the nadir position
was selected for subsequent analysis.

2.3. Image Processing

The UAV-based image preprocessing workflows were performed by following Reference [17] and
processed in IDL/ENVI environment (Exelis Visual Information Solutions, Boulder, Colorado, USA).
The pre-processing workflows included noise reduction, vignetting correction, and lens distortion
correction. Subsequently, the six bands were co-registered with 25 ground control points (GCPs) evenly
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distributed in the study area (Figure 1). Then, we conducted radiometric correction with an empirical
line correction method using a six flat calibration canvas at different reflectance intensities [17,18].
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0.0001). 

Figure 1. Relationships of NDRE with N nutrition parameters: leaf N concentration (a), leaf N
accumulation (b), plant N concentration (c), and plant N accumulation (d). The dashed line represents
the best-fit function for the data point in each plot. All regressions are statistically significant (p < 0.0001).

The reflectance value of each plot was extracted as the mean over a region of interest (ROI) in the
non-sampling area. Then, ten VIs commonly used in crop growth monitoring were calculated from the
reflectance values (Table 2).

The grey level co-occurrence matrix (GLCM) was employed in this study to evaluate the
potential of texture analysis on reflectance images for improving rice N status monitoring. Eight
GLCM-based texture metrics including mean (MEA), variance (VAR), homogeneity (HOM), contrast
(CON), dissimilarity (DIS), entropy (ENT), second moment (SEM), and correlation (COR) were
computed using the ENVI software. A detailed description of the eight texture metrics can be found in
Reference [19]. Since the smallest window size (3 × 3) was comparable to the row spacing at jointing
stage and larger window sizes did not exhibit significant differences (data not shown), only the window
size (3 × 3) was investigated. Next, inter-correlations between different texture metrics were analyzed
to decrease the data dimensionality and improve the data processing efficiency. Finally, we chose four
texture metrics (i.e., MEA, CON, DIS, and COR) at the minimal window size (3 × 3) for texture analysis
with five bands (blue, green, red, RE, and NIR) in four directions (D1 = 0◦, D2 = 45◦, D3 = 90◦ and
D4 = 135◦).

Based on individual texture bands, the normalized difference texture index (NDTI) was also
derived to improve the performance of texture analysis. The NDTI was calculated in the equation below:

NDTI(T1, T2) =
(T1 − T2)

(T1 + T2)
(1)

where T1 and T2 are a random texture feature from the five bands in four directions.

2.4. Statistical Analysis

The data collected from the two field experiments were pooled to examine the relationships of
agronomic variables with VIs, NDTIs, and their combinations by simple regression (SR) and stepwise
multiple linear regression (SMLR). Model validation was performed on the pooled data using a k-fold
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(k = 10) cross-validation procedure and evaluated by the root mean square error (RMSE) and the
relative RMSE (RRMSE).

Table 2. List of vegetation indices (VIs) used in this study.

Index Formula Reference

Color indices
Normalized green red difference
index (NGRDI) NGRDI = (R550 −R680)/(R550 + R680) [20]

Visible atmospherically resistance
index (VARI) VARI = (R550 −R680)/(R550 + R680 −R490) [21]

Green leaf index (GLI) GLI = (2R550 −R680 −R490)/(2R550 + R680 + R490) [22]

RE indices
MERIS terrestrial chlorophyll index MTCI = (R800 −R720)/(R720 + R680) [23]

red edge chlorophyll index (CIRE) CIRE = R800/R720 − 1 [24]

Normalized difference red edge
index (NDRE) NDRE = (R800 −R720)/(R800 + R720) [25]

NIR indices
Normalized difference vegetation
index (NDVI) NDVI = (R800 −R680)/(R800 + R680) [26]

Renormalized difference vegetation
index (RDVI) RDVI = (R800 −R680)/

√
(R800 + R680) [27]

Optimized soil adjusted vegetation
index (OSAVI)

OSAVI =
(1 + 0.16)(R800 −R680)/(R800 + R680 + 0.16) [28]

Modified triangular vegetation
index 2 (MTVI2)

MTVI2 =
1.5[1.2(R800−R550)−2.5(R670−R550)]√
(2R800+1)2

−(6R800−5
√

R670)−0.5
[29]

The bands used in the formula corresponded to the bands in the multispectral imagery.

3. Results

3.1. Relationships of N Nutrition Parameters with VIs

Table 3 shows the relationships among different agronomic parameters. The LNC and PNC and
LNA and PNA were highly correlated to each other. In addition, biomass was highly correlated to
both LNA and PNA. Table 4 shows the relationships between N nutrition parameters and VIs derived
from UAV multispectral images. For foliar parameters, the relationships between VIs and LNC were
remarkably low, and the highest R2 was only 0.2 obtained by CIRE and NDRE (Figure 1a). These two
indices also exhibited the strongest relationships with LNA (R2 = 0.77 for both) (Figure 1b). For plant
parameters, PNC was most correlated to CIRE as seen for LNC but with a lower R2 value (R2 = 0.15)
(Figure 1c). The OSAVI exhibited the strongest relationships with PNA (R2 = 0.73) which was also
found for NDRE (R2 = 0.73) (Figure 1d). In general, RE-based VIs exhibited better relationships with N
nutrition parameters than other indices.

Table 3. Relationships (R2) among different N nutrition parameters.

LDB AGB LNC LNA PNC PNA

LDB 1.00

AGB 0.55 1.00

LNC 0.20 0.00 1.00

LNA 0.91 0.35 0.46 1.00

PNC 0.13 0.02 0.78 0.34 1.00

PNA 0.81 0.71 0.19 0.77 0.13 1.00

LDB is leaf dry biomass, AGB is aboveground biomass, LNC is leaf nitrogen concentration, LNA is leaf nitrogen
accumulation, PNC is plant nitrogen concentration, PNA is plant nitrogen accumulation. Bold numbers indicate
values over 0.70.
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Table 4. Coefficient of determination (R2) values for the relationships between VIs and N nutrition
parameters in rice.

LNC (%) LNA (g m−2) PNC (%) PNA (g m−2)

VI L E L E L E L E

NGRDI 0.00ns 0.00ns 0.24*** 0.27*** 0.00ns 0.01ns 0.33*** 0.40***

VARI 0.00ns 0.00ns 0.32*** 0.34*** 0.00ns 0.00ns 0.33*** 0.41***

GLI 0.01ns 0.01ns 0.12*** 0.15*** 0.03* 0.05*** 0.26*** 0.32***

MTCI 0.17*** 0.16*** 0.73*** 0.68*** 0.12*** 0.10*** 0.66*** 0.62***

CIRE 0.20*** 0.20*** 0.77*** 0.72*** 0.15*** 0.13*** 0.68*** 0.65***

NDRE 0.20*** 0.19*** 0.74*** 0.77*** 0.14*** 0.13*** 0.68*** 0.73***

NDVI 0.03* 0.03* 0.39*** 0.47*** 0.02* 0.01ns 0.44*** 0.63***

RDVI 0.07*** 0.07*** 0.44*** 0.50*** 0.06*** 0.05*** 0.60*** 0.72***

OSAVI 0.07*** 0.06*** 0.45*** 0.52*** 0.06*** 0.05*** 0.58*** 0.73***

MTVI2 0.06*** 0.06*** 0.45*** 0.46*** 0.05*** 0.04** 0.59*** 0.66***

The numbers in bold correspond to the best-fit function for each N nutrition parameter. Significance level: “ns”
represents no significance, * p < 0.01, ** p < 0.001, *** p < 0.0001. “L” and “E” indicate linear and exponential regression.

3.2. Texture Analysis and Performance of Texture Indices

3.2.1. Relationships between N Nutrition Parameters and Individual Texture Metrics

Figure 2 shows the relationships between N nutrition parameters and single-band texture metrics.
For LNC and PNC estimation, the texture metrics in the direction D3 were generally superior to those
in other directions, while directions did not influence the performance of the optimal texture feature
for LNA and PNA estimation. The DIS feature and the MEA feature exhibited a higher correlation
than other texture metrics with N concentration and N accumulation indicators, respectively. The
DIS feature in the RE band was superior to other bands in LNC estimation with an R2 of only 0.26
(Figure 2a). The MEA feature in the red band was most related to LNA (R2 = 0.39) among all the texture
metrics (Figure 2b). Similar to LNC, the DIS feature in the RE band exhibited a higher correlation with
PNC compared to their counterparts (Figure 2c). The MEA feature in the NIR band obtained a higher
correlation with PNA (R2 = 0.55) than other texture metrics (Figure 2d).

3.2.2. Relationships between N Nutrition Parameters and Texture Indices

Considerable improvement was obtained with texture indices for N nutrition parameters
estimation comparing with individual texture metrics (Table 5). The majority of optimal NDTIs
were composed of texture metrics in D3 and D4. The optimal NDTIs for LNC and PNC estimation
consisted of DIS, CON, and COR features calculated from RE and NIR bands. While the optimal
NDTIs for LNA estimation consisted of MEA features calculated from RE and NIR bands, and those
for PNA estimation were composed of MEA features calculated from green and NIR bands. The
index (NDTI(DISB5_D4, CONB4_D3)) was closely related to both LNC and PNC with R2 of 0.29 and
0.41 (Figure 3a,c). The NDTI(MEAB5_D3, MEAB4_D4) performed best in the LNA estimation (R2 = 0.72)
with exponential regression (Figure 3b). The NDTI(MEAB5_D3, MEAB2_D3) performed best in the PNA
estimation (R2 = 0.75), and obvious saturation occurred at high PNA levels (Figure 3d).
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17–20: NIR) with four texture metrics (MEA, CON, DIS, and COR).

Table 5. Relationships (R2) between N nutrition parameters and the top four best-performing
texture indices.

NDTI1 NDTI2 NDTI3 NDTI4

LNC (%) (DISB5_D4, CONB4_D3) (DISB4_D2, CORB5_D3) (DISB4_D3, CORB5_D2) (DISB4_D3, CORB5_D3)

R2 0.31 0.30 0.30 0.29

LNA (g m−2) (MEAB5_D3, MEAB4_D4) (MEAB5_D3, MEAB4_D3) (MEAB5_D4, MEAB4_D4) (MEAB5_D4, MEAB4_D3)

R2 0.72 0.72 0.72 0.72

PNC (%) (DISB4_D3, CORB5_D3) (DISB5_D4, CONB4_D3) (CONB4_D3, CORB5_D2) (DISB4_D4, CORB5_D3)

R2 0.41 0.38 0.37 0.36

PNA (g m−2) (MEAB5_D3, MEAB2_D4) (MEAB5_D4, MEAB2_D4) (MEAB5_D3, MEAB2_D3) (MEAB5_D4, MEAB2_D3)

R2 0.75 0.75 0.75 0.75

All regressions are statistically significant (p < 0.0001).

3.3. Performance of the Integration of VIs and Texture Indices

Table 6 shows the performance of the combination of VIs and texture indices in the estimation
of N nutrition parameters with stepwise multiple linear regression. The hybrid model with VIs and
NDTIs could explain 70% of the variability in LNC which was significantly higher than using VIs or
texture indices alone. Compared with the optimal VI (NDRE) for LNA estimation, the combination of
VIs and NDTIs produced a slightly better relationship. Similar to the LNC estimation, the multivariate
model improved the regression significantly from 0.41 to 0.68 with three texture indices. Furthermore,
the hybrid model explained more than 80% of the variability in PNA (R2 = 0.86) which was higher
than using individual remote sensing variables alone. Interestingly, all the multivariate models for
plant-level variables included NDTI(MEAB5_D3, MEAB2_D4). Furthermore, all variables in the hybrid
models were statistically significant and multicollinearity effects were not observed.
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Table 6. Stepwise multiple linear regression output for the relationship between each of the four N
nutrition parameters and the best combination of vegetation and textural indices.

R2 Variables and Intercept B p Tol VIF

LNC (%) 0.70 Intercept 1.022 0.00

NDTI(DISB4_D2, CORB5_D3) −0.450 0.00 0.931 1.074

NDRE 2.256 0.00 0.160 6.264

NDTI(MEAB5_D4, MEAB2_D4) −1.392 0.00 0.161 6.217

LNA (g m−2) 0.85 Intercept 0.173 0.00

NDRE 5.044 0.00 0.332 3.009

NGRDI −1.120 0.00 0.320 3.121

NDTI(DISB4_D3, CORB5_D3) −0.464 0.00 0.772 1.296

PNC (%) 0.68 Intercept 0.497 0.00

NDTI(DISB4_D3, CORB5_D3) −0.646 0.00 0.779 1.284

NDTI(MEAB5_D3, MEAB4_D3) 2.316 0.00 0.210 4.757

NDTI(MEAB5_D4, MEAB2_D4) −1.485 0.00 0.217 4.604

PNA (g m−2) 0.86 Intercept −0.498 0.00

NDTI(MEAB5_D3, MEAB2_D4) 3.454 0.00 0.274 3.644

MTVI2 2.621 0.00 0.405 2.470

NGRDI −1.850 0.00 0.296 3.384

VIF and Tol indicate variance inflation factor and tolerance.

3.4. Model Validation

Table 7 shows the accuracy assessment for N nutrition parameters with the best-fit model in each
category. The multivariate model yielded the significantly higher estimation accuracy (RMSE = 0.22
and RRMSE = 9.70%) for LNC estimation than using VIs and NDTIs alone (Figure 4a–c). Compared
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with the optimal VI, the combination of VI and NDTI exhibited a slightly higher estimation accuracy
for LNA (RMSE = 1.16 g m−2 and RRMSE = 21.04%) estimation. The highest estimation accuracy
(RMSE = 0.19 and RRMSE = 15.34%) for PNC estimation was obtained by the hybrid model, which
was significantly higher than other techniques (Figure 4d–f). Similarly, the multivariate models yielded
the highest estimation accuracy for PNA (RMSE = 2.38 g m−2 and RRMSE = 24.17%) estimation when
compared with other techniques. Furthermore, the optimal multivariate models for LNC and PNC in
Table 6 exhibited satisfactory performance when validated with different dataset groups (Table 8).

Table 7. Accuracy assessment with RMSE and RRMSE values for the estimation of N nutrition
parameters with different predictor variables.

Predictor Variable
LNC (%) LNA (g m−2) PNC (%) PNA (g m−2)

RMSE RRMSE RMSE RRMSE RMSE RRMSE RMSE RRMSE

VI 0.35 15.28% 1.35 24.56% 0.31 24.78% 3.16 32.20%

NDTI 0.32 14.24% 1.54 27.91% 0.26 20.67% 3.33 33.90%

NDTI+VI 0.22 9.70% 1.16 21.04% 0.19 15.34% 2.38 24.17%
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Table 8. Accuracy assessment with RMSE and RE values for the optimal multivariate models of LNC
and PNC on different dataset groups.

Year Stage LNC (%) PNC (%)

RMSE RRMSE RMSE RRMSE

2015 Jointing 0.27 11.03% 0.27 19.95%

Early-booting 0.22 9.48% 0.20 14.09%

Late-booting 0.25 10.95% 0.19 15.65%

Filling 0.18 9.45% 0.12 14.58%

All 0.23 10.41% 0.20 16.82%

2016 Jointing 0.17 6.95% 0.18 11.55%

Booting 0.26 10.83% 0.20 14.27%

Heading 0.17 7.15% 0.22 17.80%

Filling 0.22 10.72% 0.12 11.21%

All 0.21 8.99% 0.18 13.93%
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When all the texture indices in the multivariate models used the texture metrics calculated in the
direction D3 for simplicity, the validation accuracies for the majority of N nutrition parameters were
marginally lower (data not shown). For example, the validation RMSE and RRMSE values of the LNC
estimation decreased slightly to 0.24% and 10.52%, respectively.

4. Discussion

4.1. Differences among N Nutrition Parameters: N Concentration versus N Accumulation

The estimation accuracies for LNC and PNC were low when using VIs and the best-performing
VI could explain no more than 30% of the variability in N concentration. However, the estimation
accuracies for LNA and PNA were significantly higher than those for LNC and PNC. The optimal
VI (NDRE) could explain 77% and 73% of the variability in LNA and PNA, respectively. The LNC
(or PNC) varied in a narrow range across the growing season of rice crops. It decreased from the
beginning, leveled off in the middle and then decreased until harvesting [6]. This trend could be
characterized by NDRE with a linear but weak relationship. However, LNA (or PNA) varied in
a relatively wider range and kept increasing across the entire season. Particularly, NDRE tended
to saturate when LNA (PNA) increased to a certain level. A linear regression would not be able
to capture this decreasing rate of nitrogen accumulation. Therefore, LNC or PNC exhibited weak
relationships with VIs in linear regressions and LNA or PNA in exponential regression [3,5]. Besides,
the N absorption features are located in the shortwave infrared (SWIR) region rather than the visible
and NIR region [30]. Li et al. [31] improved crop LNC estimation from the SWIR reflectance spectra
of fresh leaves through enhancing the absorption features of nitrogen in the SWIR region. However,
those VIs derived from UAV multispectral imagery were all based on visible and NIR bands, which
could be easily affected by chlorophyll content and canopy structure [32]. Furthermore, the N dilution
effect might be another reason for the low estimation accuracy of LNC and PNC with VIs due to the
decrease of N concentration along with the increase of biomass [33]. The good relationships between
NA and VIs might be attributed to the strong capabilities of VIs in retrieving biomass [34] and the
close correlation between N accumulation and biomass (Table 3).

In texture analysis, the optimal NDTI for LNC and PNC estimation were all composed of NIR and
RE bands with similar texture metrics (e.g., CON, DIS, COR). Although both LNC and PNC could be
estimated with a common index NDTI (DISB4_D3, CORB5_D3), the relationships between texture indices
and NC were not strong in both linear and exponential regressions. That might be because leaf color
turned light to dark repeatedly in response to N fertilization at the vegetative stages and kept yellowing
at reproductive stages [6]. This reduced the sensitivity of texture metrics to the heterogeneity of tonal
variation caused by N status in crops across the whole growing season. Specifically, NDTI(MEAB5,
MEAB4) and NDTI(MEAB5, MEAB2) were the optimal texture indices across the whole growing season
in exponential regression for LNA and PNA estimation, respectively (Table 5). Because allometric
variation of LNA or PNA in the season was largely attributed to biomass (Table 3), texture indices
could characterize the biomass related variation with an exponential regression [7,8].

Furthermore, the variables in the multivariate model for LNA included one N-sensitive variable
(NDTI(DISB4_D3, CORB5_D3)) and two biomass-sensitive variables (NDRE and NGRDI). Therefore,
LNA could reflect part of the variation in LNC [35,36], but the exact proportion needs to be investigated
in future work. However, the optimal multivariate PNA estimation model consisted of entirely
AGB-sensitive indices such as NDTI(MEAB5_D3, MEAB2_D4), MTVI2 [29], and NGRDI [20]. This also
suggests that the variation in PNA might be dominated by biomass and contain weak information on
N concentration which corresponds well with the findings in Reference [5].

4.2. Directional Effect of Texture Analysis on Row-Planted Crops

The directional effect of texture analysis was rarely investigated in the existing literature, since
the majority of previous studies executed texture analysis with the default direction (45◦) [7,15].
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Some studies calculated texture metrics with different directions but did not explicitly explain the
reason [10,16]. That might be because most of them studied naturally grown forests, and the trees
were distributed disorderly. In contrast, we found that texture metrics had a significant directional
effect (Figure 2). That is because rice plants are grown in rows, and the local window sliding along the
row orientation contains more homogeneous vegetation than from other directions. Furthermore, the
rice plants in the same row grow more homogenously than those in different rows, resulting in lower
contrast and higher correlation in the along-row direction than in other directions (Figure 5). Texture
indices calculated with texture metrics from different directions had different performances on the N
nutrition parameter estimation (Table 6). However, the texture feature MEA represents the average
values within the moving window and the textural information extracted from the UAV images is the
average value from an ROI in the non-sampling area. As a result, MEA was not affected by directions,
and the same R2 value was obtained with the optimal NDTIs composed of MEA features calculated in
different directions for LNA and PNA estimation (Table 6).
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0◦, D2 = 45◦, D3 = 90◦, D4 = 135◦) for dense canopy (b) and sparse canopy (c) plots.

Texture metrics calculated in directions D3 and D4 constructed the optimal NDTIs for LNC and
PNC estimation which might be explained by the strong capability of across-row texture metrics in
differentiating the tonal variations caused by N status. Moreover, the estimation accuracy (RMSE =

0.24, RRMSE = 10.52%) of LNC decreased marginally if the texture indices in the multivariate model of
LNC were derived from the direction D3 alone. Additionally, the same estimation accuracies were
obtained for other N parameters (LNA, PNC, and PNA) through the multivariate models with all the
texture indices calculated in the direction D3 when compared to the original multivariate models (data
not shown). Therefore, all N nutrition parameters could be estimated at nearly the highest accuracies
with the combination of VIs and texture indices calculated with texture metrics in the direction D3
which could simplify the use of texture analysis significantly.

Texture analysis also involved the optimal selection of texture calculation algorithm, spectral band,
and window size [14]. Although window size has a considerable effect on the estimation accuracy
of forest biomass due to the mismatch of spatial scale between remotely sensed pixel size and tree
canopy [14,16], it showed no significant influence in the present study. This was because most window
sizes contained a large proportion of crops due to the large canopy coverage since the jointing stage.
Rice crops are often planted in the row distance of 24–30 cm, and multispectral images collected at 100
m usually possess a spatial resolution of 5–7 cm. Hence, a larger window size might be a good choice
for texture analysis at early growth stages. Yue et al. [7] also found the optimal image resolution for
using image textures to estimate AGB in winter wheat depended on the crop canopy size and row
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spacing. Therefore, the optimal window size has to be taken into consideration in terms of row space
and image spatial resolution for other row-planted crops (e.g., soybean, corn).

4.3. The Benefits of Fused Information for Enhancing N Signals

Numerous studies were dedicated to improving N concentration estimation with different
approaches due to the importance of N nutrition status in crop management. The most commonly
used way was to propose new VIs for N concentration estimation [37,38]. Although those VIs yielded
high estimation accuracies as shown in the literature, the unstable performance was reported in other
studies [39]. In this study, VIs had poor performance in N concentration estimation, which is in line
with References [3,5]. Texture indices showed comparable performance when compared to VIs which is
in contrast to the performance of texture ratios in forest AGB estimation [10,16]. However, a significant
improvement in LNC estimation was obtained when using the combination of texture indices and
VIs as compared to using VIs or texture indices alone, with an increase of more than 35% in RMSE
(Table 7). This finding agrees well with the results of References [7] and [8] which reported that the
combination of texture indices and VIs improved the estimation of crop AGB significantly. In contrast
to relevant studies [6,40], a universal model could be used to estimate N concentration across the entire
season, which was a substantial improvement in crop N status monitoring with remotely sensed data.
Compared with the new spectral index proposed by Stroppiana et al. [38] with hyperspectral data (R2

= 0.65), our multivariate model derived from multispectral data could even yield a similar R2 value
(R2 = 0.68) for PNC. A universal model suitable for the entire season could not only be used to guide N
fertilization applications at the early growth stages [1,41] but also to predict crop yield and quality
before harvest [42,43].

The improvement in LNC and PNC estimation induced by the addition of texture indices
stemmed from the enhancement of N signals for the early stages. VIs could not be used to estimate N
concentration at the early growth stages (from tillering to booting) with a universal model, because
N signals were hampered by the rapid increase of biomass and the large proportion of background
materials [5,6]. However, leaf color changed remarkably due to the N fertilizer applications conducted
at jointing stage [11,12], and texture metrics could characterize the spatial distribution of tonal variations
caused by N status. The values of CON feature had a greater variation between jointing and booting
stages than reflectance (Figure 6). Furthermore, VIs had weak capability in N status monitoring
at reproductive stages due to the high canopy coverage [2]. However, leaf tone had a visual color
change from the vegetative period to the reproductive period, and the values of CON and DIS were
significantly different at reproductive stages (Figure 6). NDTI has a wider variation than NDRE at
high N levels at late growth stages (Figure 7). Therefore, the N signal could also be detected by those
texture metrics at the late growth stages.

Moreover, texture metrics have the capability of smoothing the spatial heterogeneity between
vegetation and background materials with a sliding window [9,16]. Therefore, the complementary
information between texture and VIs might be useful for solving the saturation problem and reducing
background interference. Although a similar conclusion has been drawn by Yue et al. [7] and
Zheng et al. [8] for AGB estimation, this study represents the first solid evidence on improving the
estimation of N nutrition parameters, especially leaf and plant N concentrations.
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Multi-source data fusion was commonly used in previous studies to improve the estimation of
crop biomass [44–46]. For example, Yue et al. [45] improved wheat biomass estimation by combining
VIs and plant height derived from crop surface models (CSMs), but the construction of CSMs was
tedious and time consuming. Although the fusion of data from different platforms could also acquire
higher estimation accuracy [44], the data (e.g., LiDAR data) processing needs more professional skill.



Remote Sens. 2020, 12, 957 14 of 17

However, UAV-based image texture and spectral data are more convenient to acquire over small fields.
Furthermore, the fusion of texture and spectral data could improve the accuracy of N status estimation
of multiple growth stages, which solves the problem that N status was often estimated at only one
growth stage or a short time window [6,40]. Therefore, monitoring N status across the whole season
could be realized through the integration of texture and spectral information into the crop growth
monitoring systems.

There might be some concerns that it is challenging to build a universal model for predicting the
N status of rice plants across the entire growing season [3]. With spectral information alone, VIs often
exhibit weak capabilities of detecting N status at late growth stages due to the fact of crop senescence.
Textural information could capture the variation of leaf color within and between plots, especially
at the late stages when leaf color changes dramatically. However, our results demonstrated that the
fusion of spectral and textural information could improve N status monitoring efficiently. Furthermore,
the multivariate models for LNC and PNC were tested on different dataset groups with satisfactory
validation performance (Table 8). The applicability of those models still needs to be improved through
further testing with more datasets from different geographic sites.

4.4. Potentials for Other Platforms

In this study, we found the combination of spectral and texture information in NIR and RE bands
was superior to that in other bands in rice N status monitoring. As for monitoring crop N status in
large areas, satellite imagery has been widely used but with low estimation accuracy. That is because
satellite imagery has low spatial resolution and low spectral resolution normally with blue, green,
red and NIR wavebands. RapidEye is the first launched satellite with a RE band and successfully
applied to many aspects of precision agriculture [47,48]. Other satellites with RE bands (e.g., Sentinel-2,
WorldView-2, and Gaofen-6) have been launched and have yielded significant improvement in the
estimation accuracy on agronomic variables [49,50]. These findings from satellite observations were
consistent with our results that the RE-based VIs were superior to other indices.

To date, texture analysis on satellite imagery was mostly used for forest AGB [14–16]. Our findings
provide a strong reference on crop N status with texture analysis of satellite images equipped with
the RE band. However, in terms of spatial resolution and crop row spacing, the spatial resolution of
satellite imagery (highest spatial resolution is 0.3 m by WorldView 3) is insufficient for distinguishing
the narrow row spacing in cereal crops (e.g., rice, wheat). Furthermore, crops could be planted in
multiple directions over large areas and the direction effect of texture metrics may not be significant in
satellite images with lower spatial resolutions. Given the suitability of UAV platforms for small-scale
applications for the moment, the direction of texture analysis could still exist in UAV imagery. When
using texture analysis on row-planted vegetation (e.g., staple crops, vegetable crops, and fruit trees) at
the farm level with high resolution images, it is still beneficial to take consideration of the direction
effect for improved nitrogen nutrition monitoring.

5. Conclusions

We investigated the potential of texture analysis from UAV-based multispectral imagery for
N status monitoring in terms of texture metrics, texture directions, and texture indices. For N
concentration estimation, low estimation accuracies were obtained using VIs, individual texture metrics
or texture indices alone. However, considerable improvements were achieved with the combination of
VIs and texture indices. The multivariate models with fused information yielded the highest accuracy
for LNC (RMSE = 0.22 and RRMSE = 9.70%) and PNC (RMSE = 0.19 and RRMSE = 15.34%). Moreover,
the multivariate models exhibited high estimation accuracy when tested on dataset in different years
and growth stages. For N accumulation estimation, NDRE yielded high estimation accuracies on LNA
(RMSE = 1.35 g m−2 and RRMSE = 24.56%) and PNA (RMSE = 3.16 g m−2 and RRMSE = 32.20%).
Compared with the models based on VIs or texture indices alone, the multivariate model also yielded
higher accuracies for LNA (RMSE = 1.16 g m−2 and RRMSE = 21.04%) and PNA (RMSE = 2.38 g m−2
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and RRMSE = 24.17%) estimation. When calculating the texture metrics, the across-row direction
(D3) should be used for the best performance over row-planted crops instead of the default diagonal
direction (D2). These findings could serve as useful references for deriving appropriate texture indices
from multispectral UAV imagery for N nutrition monitoring. This study provides new insights on
enhancing the N signals from rice canopies by adding the textural information to conventional VIs. It
has great potential in conducting rapid, accurate monitoring of N status monitoring over other crops
and developing effective practices of improved crop management.
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