The Relationship between Drone Speed and the Number of Flights in RFID Tag Reading for Plant Inventory
Abstract
:1. Introduction
- To evaluate the number of flights needed to read all tags deployed in the field
- To determine the number of scans per pass, and
- To determine the optimal drone speed for reading.
2. Materials and Methods
2.1. Study Site, Drone and RFID Tags
2.2. RFID-Reader Module (RFID-RM) and Dashboard
2.3. Weather Condition
2.4. The Tag Layout
2.5. The Number of Tags Scanned
2.6. Inverse Rate
- ν = drone speed (m/s);
- = total distance (meters) flown by the drone in one pass;
- t = drone travel time (seconds).
- spt = seconds per tag;
- t = drone travel time (seconds);
- T = new tags scanned per pass.
2.7. RFID-RM Efficiency
- mpt = meters per tag
- spt = seconds per tag
- ν = speed (m/s)
2.8. Statistical Analysis
3. Results
3.1. The Number of New Tags Scanned
3.2. Inverse Rate
3.3. RFID-RM Efficiency
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA NASS. US Farmers Expect to Plant More Corn and Soybean Acreage. 2021. Available online: https://www.nass.usda.gov/Newsroom/2021/03-31-2021.php (accessed on 9 July 2021).
- USDA NASS. U.S. Horticulture Operations Report $13.8 Billion in Sales. 2019. Available online: https://www.nass.usda.gov/Newsroom/archive/2020/12-08-2020.php (accessed on 23 September 2021).
- Hall, C.R. Managing Plant Material Inventory. Ornamental Production. 2021. Available online: https://aggie-horticulture.tamu.edu/ornamental/economic-fact-sheets/managing-plant-material-inventory/ (accessed on 29 June 2021).
- West, B. Nursery Inventory Management. Lawn and Landscape (Market Leadership). 2020. Available online: https://www.lawnandlandscape.com/article/nursery-inventory-management (accessed on 18 May 2021).
- Owen, J.S.; Lebude, A.; Calabro, J.; Boldt, J.; Gray, J.; Altland, J. Research Priorities of the Environmental Horticultural Industry Founded through Consensus. J. Environ. Hortic. 2019, 37, 120–126. [Google Scholar] [CrossRef]
- Abayomi, E.J.; Ridolfo, H. The Effects of Currently Reported Data on Data Quality: An Analysis of the Agricultural Labor Survery. 2017. Available online: https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/reports/conferences/JSM/JSM_2017_Abayomi-Ridolfo.pdf (accessed on 18 May 2021).
- de Castro, A.; Maja, J.M.; Owen, J.; Robbins, J.; Pena, J. Experimental approach to detect water stress in ornamental plants using suas-imagery. Proc. SPIE 2018, 10664, 106640N. [Google Scholar] [CrossRef]
- Ehsani, R.; Maja, J. The Rise of Small UAVs in Precision Agriculture. 2013. Available online: https://elibrary.asabe.org/pdfviewer.asp?param1=s:/8y9u8/q8qu/tq9q/5tv/HH/72IGHJ/IG/K/hBIG_K_HO.5tv¶m2=L/IK/IGIH¶m3=HJG.HIN.ILL.IGJ¶m4=44296 (accessed on 28 May 2021).
- Bowman, K.D. Identification of Woody Plants with Implanted Microchips. Am. Soc. Hortic. Sci. 2005, 15, 352–354. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Vougioukas, S. Field Experiments for evaluating the incorporation of RFID and barcode registration and digital weighing technologies in manual fruit harvesting. Comput. Electron. Agric. 2009, 66, 166–172. [Google Scholar] [CrossRef]
- Luvisi, A.; Panattoni, A.; Bandinelli, R.; Rinaldelli, E.; Pagano, M.; Gini, B.; Triolo, E. RFID microchip internal implants: Effects on grapevine histology. Sci. Hortic. 2010, 124, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Luvisi, A.; Pagano, M.; Bandinellie, R.; Rinaldelli, E.; Gini, B.; Scarton, M.; Triolo, E. Virtual vineyard for grapevine management purposes: A RFID/GPS application. Comput. Electron. Agric. 2011, 75, 368–371. [Google Scholar] [CrossRef]
- Kumagai, M.H.; Miller, P. Development of electronic barcodes for use in plant pathology and functional genomics. Plant Mol. Biol. 2006, 61, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Ampatzidis, Y.; Vougioukas, S.; Bochtis, D.; Tsatsarelis, C. A yield mapping system for hand-harvested fruits based on RFID and GPS location technologies: Field testing. Precis. Agric. 2008, 10, 63–72. [Google Scholar] [CrossRef]
- About-RFID. Available online: https://www.impinj.com/about-rfid/types-of-rfid-systems#:~:text=Passive%20RFID%20systems%20can%20operate,typically%20less%20than%2010%20m (accessed on 10 November 2020).
- Fernandez, R. RFID: How It Works and What It Can Do for the Green Industry. Am. Hort Newsl. 2014, 9, 6–11. Available online: https://www.researchgate.net/publication/271194305_RFID_How_It_Works_And_What_It_Can_Do_For_The_Green_Industry (accessed on 8 September 2020).
- Quino, J.; Maja, J.; Robbins, J.; Fernandez, R.; Owen, J.S.; Chappell, M. RFID and drones: The next generation of plant inventory. AgriEngineering 2021, 3, 168–181. [Google Scholar] [CrossRef]
- Saraswat, D.; Robbins, J. High-Tech Tags. Nursery Management. 2011. Available online: https://www.nurserymag.com/article/nm1111-rfid-technology-tags/ (accessed on 28 May 2021).
- R.A. Dudley Nurseries, Inc. Available online: https://www.radudley.com/plants-archive (accessed on 23 September 2021).
- Buffi, A.; Motroni, A.; Nepa, P.; Tellini, B.; Cioni, R. A SAR-based measurement method for Passive-Tag positioning with a Flying UHF-RFID Reader. IEEE Trans. Instrum. Meas. 2019, 68, 845–853. [Google Scholar] [CrossRef]
- Siachalou, S.; Megalou, S.; Tzitzis, A.; Tsardoulias, E.; Bletsas, A.; Sahalos, J.; Yioultsis, T.; Dimitriou, A.G. Robotic Inventorying and Localization of RFID Tags Exploiting Phase-Fingerprinting. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 362–367. [Google Scholar] [CrossRef]
- Yang, P.; Wu, W.; Moniri, M.; Chibelushi, C.C. Efficient Object Localization Using Sparsely Distributed Passive RFID Tags. IEEE Trans. Ind. Electron. 2013, 60, 5914–5924. [Google Scholar] [CrossRef]
Wind Speed | 4.8 kph~9.7 kph |
Average Wind Speed | 1.4 kph~4.5 kph |
Predominant Wind Speed | NE, E, ENE |
Humidity Level | 78.8~85.2% |
Temperatures | 28.3~30.7° Centigrade |
Atmospheric Pressure | 101,998.0~102,028.5 Pa |
Speed (v) Meters per Sec | Total Distance (d) Meters | Drone Travel Time (t) Seconds |
---|---|---|
2.2 m/s (8 kph) | 5.8 | 2.6 |
1.7 m/s (6 kph) | 5.8 | 3.5 |
1.1 m/s (4 kph) | 5.8 | 5.2 |
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
No. of Passes | 81.3 | 7 | 11.6 | 9.3 | 0.000126 | 2.7 |
Drone Speeds | 0.6 | 2 | 0.3 | 0.1 | 0.941182 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quino, J.; Maja, J.M.; Robbins, J.; Owen, J., Jr.; Chappell, M.; Camargo, J.N.; Fernandez, R.T. The Relationship between Drone Speed and the Number of Flights in RFID Tag Reading for Plant Inventory. Drones 2022, 6, 2. https://doi.org/10.3390/drones6010002
Quino J, Maja JM, Robbins J, Owen J Jr., Chappell M, Camargo JN, Fernandez RT. The Relationship between Drone Speed and the Number of Flights in RFID Tag Reading for Plant Inventory. Drones. 2022; 6(1):2. https://doi.org/10.3390/drones6010002
Chicago/Turabian StyleQuino, Jannette, Joe Mari Maja, James Robbins, James Owen, Jr., Matthew Chappell, Joao Neto Camargo, and R. Thomas Fernandez. 2022. "The Relationship between Drone Speed and the Number of Flights in RFID Tag Reading for Plant Inventory" Drones 6, no. 1: 2. https://doi.org/10.3390/drones6010002
APA StyleQuino, J., Maja, J. M., Robbins, J., Owen, J., Jr., Chappell, M., Camargo, J. N., & Fernandez, R. T. (2022). The Relationship between Drone Speed and the Number of Flights in RFID Tag Reading for Plant Inventory. Drones, 6(1), 2. https://doi.org/10.3390/drones6010002