The Use of UAVs for the Characterization and Analysis of Rocky Coasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Oia (Pontevedra)
2.1.2. Laxe Brava (A Coruña)
2.1.3. Caamaño (A Coruña)
2.1.4. Ponzos (A Coruña)
2.2. Material
2.3. Methods
3. Evolution of UAVs Studies in Galician Coast and Their Future
3.1. Boulder Beach Dynamics
3.2. Shore Platform Analysis Using UAV Data
3.3. Management of Rocky Ecosystems Using UAV Data
3.4. Improvements in Research with the Use of UAVs
3.5. The Future of UAVs in Coastal Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bird, E.C.F. Coastal Geomorphology: An Introduction, 2nd ed.; John Wiley & Sons: Chichester, UK, 2008; ISBN 9780470723968. [Google Scholar]
- Young, A.P.; Carilli, J.E. Global distribution of coastal cliffs. Earth Surf. Process. Landf. 2019, 44, 1309–1316. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Pazo, A.; Pérez-Alberti, A.; Trenhaile, A. Recording inter-annual changes on a boulder beach in Galicia, NW Spain using an unmanned aerial vehicle. Earth Surf. Process. Landf. 2019, 44, 1004–1014. [Google Scholar] [CrossRef]
- Perez-Alberti, A.; Gomez-Pazo, A. The Rocky Coasts of Northwest Spain. In The Spanish Coastal Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 27–47. ISBN 9783319931692. [Google Scholar]
- Aranda, M.; Gracia, F.J.; Pérez-Alberti, A. Selección y Descripción de Variables que Permitan Diagnosticar el Estado de Conservación del Parámetro ‘Estructura y Función’ de los Diferentes Tipos de Hábitat Costeros; Ministerio para la Transición Ecológica: Madrid, Spain, 2019. [Google Scholar]
- Marques, F. Regional Scale Sea Cliff Hazard Assessment at Sintra and Cascais Counties, Western Coast of Portugal. Geosciences 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Del Río, L.; Gracia, F.J.; Benavente, J. Mass Movements and Cliff Retreat along the SW Spanish Coast. J. Coast. Res. 2009, SI, 717–721. [Google Scholar]
- Naylor, L.A.; Coombes, M.A.; Viles, H.A. Geomorphology Reconceptualising the role of organisms in the erosion of rock coasts: A new model. Geomorphology 2012, 157–158, 17–30. [Google Scholar] [CrossRef]
- Naylor, L.A.; Viles, H.A.; Carter, N.E.A. Biogeomorphology revisited: Looking towards the future. Geomorphology 2002, 47, 3–14. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Blanco-Chao, R.; Vázquez, M.; Valcárcel, M. Dinámica y evolución de las costas rocosas. El ejemplo de Galicia. In Geomorfología Litoral. Procesos Activos; de Andrés, J.R., Gracia, F.J., Eds.; ITGME. Ministerio de Ciencia y Tecnología: Madrid, Spain, 1999; pp. 175–185. [Google Scholar]
- Trenhaile, A.S. The effect of Holocene changes in relative sea level on the morphology of rocky coasts. Geomorphology 2010, 114, 30–41. [Google Scholar] [CrossRef]
- Naylor, L.A.; Stephenson, W.J.; Trenhaile, A.S. Rock coast geomorphology: Recent advances and future research directions. Geomorphology 2010, 114, 3–11. [Google Scholar] [CrossRef]
- Swirad, Z.M.; Rosser, N.J.; Brain, M.J. Identifying mechanisms of shore platform erosion using Structure-from-Motion (SfM) photogrammetry. Earth Surf. Process. Landf. 2019, 44, 1542–1558. [Google Scholar] [CrossRef] [Green Version]
- Hastewell, L.; Inkpen, R.; Bray, M.; Schaefer, M. Quantification of contemporary storm-induced boulder transport on an intertidal shore platform using radio frequency identification technology. Earth Surf. Process. Landf. 2020, 45, 1601–1621. [Google Scholar] [CrossRef]
- Perez-Alberti, A.; Trenhaile, A.S.; Pires, A.; Lopez-Bedoya, J.; Chamine, H.I.; Gomes, A. The effect of boulders on shore platform development and morphology in Galicia, north west Spain. Cont. Shelf Res. 2012, 48, 122–137. [Google Scholar] [CrossRef]
- Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An integrated procedure to assess the stability of coastal rocky cliffs: From UAV close-range photogrammetry to geomechanical finite element modeling. Remote Sens. 2017, 9, 1235. [Google Scholar] [CrossRef] [Green Version]
- Vann Jones née Norman, E.C.; Rosser, N.J.; Brain, M.J.; Petley, D.N. Quantifying the environmental controls on erosion of a hard rock cliff. Mar. Geol. 2015, 363, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Blanco Chao, R.; Pérez Alberti, A. Formas litorales en la costa noroccidental gallega: Los sectores acantilados entre Cabo Prioriño (Ferrol) y Punta Frouxeira (Valdoviño). Geographicalia 1996, 33, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Sunamura, T. Geomorphology of Rocky Coasts; Wiley: Chichester, UK, 1992; ISBN 0471917753. [Google Scholar]
- Naylor, L.A.; Stephenson, W.J. On the role of discontinuities in mediating shore platform erosion. Geomorphology 2010, 114, 89–100. [Google Scholar] [CrossRef]
- Inkpen, R.J.; Stephenson, W. Statistical analysis of the significance of site topography and erosion history on erosion rates on intertidal shore platforms, Kaikoura Peninsula, South Island, New Zealand. Geomorphology 2006, 81, 18–28. [Google Scholar] [CrossRef]
- Stephenson, W.J.; Finlayson, B.L. Measuring erosion with the micro-erosion meter-Contributions to understanding landform evolution. Earth Sci. Rev. 2009, 95, 53–62. [Google Scholar] [CrossRef]
- Stephenson, W.J.; Kirk, R.M.; Hemmingsen, S.A.; Hemmingsen, M.A. Decadal scale micro erosion rates on shore platforms. Geomorphology 2010, 114, 22–29. [Google Scholar] [CrossRef]
- Trudgill, S.T. The subaerial and subsoil erosion of limestones on Aldabra Atoll, Indian Ocean. Z. Geomopholgie 1976, 26, 201–210. [Google Scholar]
- Letortu, P.; Costa, S.; Maquaire, O.; Delacourt, C.; Augereau, E.; Davidson, R.; Suanez, S.; Nabucet, J. Retreat rates, modalities and agents responsible for erosion along the coastal chalk cliffs of Upper Normandy: The contribution of terrestrial laser scanning. Geomorphology 2015, 245, 3–14. [Google Scholar] [CrossRef]
- Jaud, M.; Letortu, P.; Théry, C.; Grandjean, P.; Costa, S.; Maquaire, O.; Davidson, R.; Le Dantec, N. UAV survey of a coastal cliff face—Selection of the best imaging angle. Meas. J. Int. Meas. Confed. 2019, 139, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Dickson, M.E.; Masselink, G. Systematic analysis of rocky shore platform morphology at large spatial scale using LiDAR-derived digital elevation models. Geomorphology 2017, 286, 45–57. [Google Scholar] [CrossRef]
- Le Mauff, B.; Juigner, M.; Ba, A.; Robin, M.; Launeau, P.; Fattal, P. Coastal monitoring solutions of the geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast, France). Geomorphology 2018, 304, 121–140. [Google Scholar] [CrossRef]
- Thébaudeau, B.; Trenhaile, A.S.; Edwards, R.J. Modelling the development of rocky shoreline profiles along the northern coast of Ireland. Geomorphology 2013, 203, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Aoki, H.; Matsukura, Y. A new technique for non-destructive field measurement of rock-surface strength: An application of the Equotip hardness tester to weathering studies. Earth Surf. Process. Landf. 2007, 32, 1759–1769. [Google Scholar] [CrossRef] [Green Version]
- Viles, H.; Goudie, A.; Grab, S.; Lalley, J. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surf. Process. Landf. 2011, 36, 320–333. [Google Scholar] [CrossRef]
- Feal-Pérez, A.; Blanco-Chao, R. Characterization of abrasion surfaces in rock shore environments of NW Spain. Geo Mar. Lett. 2013, 33, 173–181. [Google Scholar] [CrossRef]
- Lim, M.; Rosser, N.J.; Allison, R.J.; Petley, D.N. Erosional processes in the hard rock coastal cliffs at Staithes, North Yorkshire. Geomorphology 2010, 114, 12–21. [Google Scholar] [CrossRef]
- Cenci, L.; Disperati, L.; Persichillo, M.G.; Oliveira, E.R.; Alves, F.L.; Phillips, M. Integrating remote sensing and GIS techniques for monitoring and modeling shoreline evolution to support coastal risk management. GISci. Remote Sens. 2018, 55, 355–375. [Google Scholar] [CrossRef]
- Federici, B.; Corradi, N.; Ferrando, I.; Sguerso, D.; Lucarelli, A.; Guida, S.; Brandolini, P. Remote sensing techniques applied to geomorphological mapping of rocky coast: The case study of Gallinara Island (Western Liguria, Italy). Eur. J. Remote Sens. 2019, 52, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Horikawa, K.; Sunamura, T. A study on erosion of coastal cliffs by using aerial photographs. Coast. Eng. Jpn. 1967, 10, 67–83. [Google Scholar] [CrossRef]
- Gómez-Pazo, A.; Pérez-Alberti, A.; Trenhaile, A. Tracking clast mobility using RFID sensors on a boulder beach in Galicia, NW Spain. Geomorphology 2021, 373, 107514. [Google Scholar] [CrossRef]
- Hastewell, L.J.; Schaefer, M.; Bray, M.; Inkpen, R. Intertidal boulder transport: A proposed methodology adopting Radio Frequency Identification (RFID) technology to quantify storm induced boulder mobility. Earth Surf. Process. Landf. 2019, 44, 681–698. [Google Scholar] [CrossRef] [Green Version]
- Casamayor, M.; Alonso, I.; Cabrera, J.; Rodríguez, S.; Sánchez-García, M. Long term recovery rates obtained using RFID technology at a mixed beach. Geol. Acta 2015, 13, 85–96. [Google Scholar] [CrossRef]
- Viles, H. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology 2016, 270, 121–133. [Google Scholar] [CrossRef]
- Masek, J.G.; Hayes, D.J.; Joseph Hughes, M.; Healey, S.P.; Turner, D.P. The role of remote sensing in process-scaling studies of managed forest ecosystems. For. Ecol. Manag. 2015, 355, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Cruz, H.; Eckert, M.; Meneses, J.; Martínez, J.F. Efficient forest fire detection index for application in Unmanned Aerial Systems (UASs). Sensors 2016, 16, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Boesl, F.; Engel, M.; Eco, R.C.; Galang, J.N.B.; Gonzalo, L.A.; Llanes, F.; Quix, E.; Brückner, H. Digital mapping of coastal boulders—high-resolution data acquisition to infer past and recent transport dynamics. Sedimentology 2019, 67, 1393–1410. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Trenhaile, A.S. Clast mobility within boulder beaches over two winters in Galicia, northwestern Spain. Geomorphology 2015, 248, 411–426. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Trenhaile, A.S. An initial evaluation of drone-based monitoring of boulder beaches in Galicia, north-western Spain. Earth Surf. Process. Landf. 2015, 40, 105–111. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Pires, A.; López, M. Photogrammetric evaluation of rocky coasts using UAV mapping system. In Proceedings of the 8th IAG International Conference, Paris, France, 27–31 August 2013. [Google Scholar]
- Pérez-Alberti, A. Boulder mobility and shore platform erosion in southern Galicia, Northwestern Spain. In Proceedings of the 8th International conference (AIG) on Geomorphology “Geomorphology and sustainability” (Abstracts), Paris, France, 27–31 August 2013; p. 857. [Google Scholar]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Gonçalves, G.R. Surveying coastal cliffs using two UAV platforms (multirotor and fixed-wing) and three different approaches for the estimation of volumetric changes. Int. J. Remote Sens. 2020, 41, 8143–8175. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Gómez-Pazo, A.; Perez-Alberti, A. El uso de imágenes de alta resolución en el estudio de los cambios volumétricos en playas de bloques. El ejemplo de Laxe Brava (Ribeira, NO Península Ibérica). In Proceedings of the X Jornadas de Geomorfología Litoral, Castelldefells, Spain, 4–6 September 2019; pp. 201–204. [Google Scholar]
- Coombes, M.A.; Feal-Pérez, A.; Naylor, L.A.; Wilhelm, K. A non-destructive tool for detecting changes in the hardness of engineering materials: Application of the Equotip durometer in the coastal zone. Eng. Geol. 2013, 167, 14–19. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; USGS: Reston, VA, USA, 2018. [Google Scholar]
- Castedo, R.; de la Vega-Panizo, R.; Fernández-Hernández, M.; Paredes, C. Measurement of historical cliff-top changes and estimation of future trends using GIS data between Bridlington and Hornsea—Holderness Coast (UK). Geomorphology 2015, 230, 146–160. [Google Scholar] [CrossRef]
- Puig, M.; Del Río, L.; Plomaritis, T.A.; Benavente, J. Contribution of storms to shoreline changes in mesotidal dissipative beaches. Case study in the Gulf of Cadiz (SW Spain). Nat. Hazards Earth Syst. Sci. 2016, 16, 2543–2557. [Google Scholar] [CrossRef] [Green Version]
- Puig, M.; Del Río, L.; Plomaritis, T.A.; Benavente, J. Influence of storms on coastal retreat in SW Spain. J. Coastal Res. 2014, 70, 193–198. [Google Scholar] [CrossRef]
- Masselink, G.; Castelle, B.; Scott, T.; Dodet, G.; Suanez, S.; Jackson, D.; Floc’h, F. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 2016, 43, 2135–2143. [Google Scholar] [CrossRef]
- James, M.R.; Chandler, J.H.; Eltner, A.; Fraser, C.; Miller, P.E.; Mills, J.P.; Noble, T.; Robson, S.; Lane, S.N. Guidelines on the use of Structure from Motion Photogrammetry in Geomorphic Research. Earth Surf. Process. Landf. 2019, 44, 2081–2084. [Google Scholar] [CrossRef]
- Trenhaile, A.S. Rock coasts, with particular emphasis on shore platforms. Geomorphology 2002, 48, 7–22. [Google Scholar] [CrossRef]
- Lim, M.; Petley, D.N.; Rosser, N.J.; Allison, R.J.; Long, A.J.; Pybus, D. Combined digital photogrammetry and time-of-flight laser scanning for monitoring cliff evolution. Photogramm. Rec. 2005, 20, 109–129. [Google Scholar] [CrossRef]
- Quinn, J.D.; Rosser, N.J.; Murphy, W.; Lawrence, J.A. Identifying the behavioural characteristics of clay cliffs using intensive monitoring and geotechnical numerical modelling. Geomorphology 2010, 120, 107–122. [Google Scholar] [CrossRef]
- Valenzuela, P.; Zêzere, J.L.; Domínguez-Cuesta, M.J.; Mora García, M.A. Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain). Landslides 2019, 16, 1285–1300. [Google Scholar] [CrossRef]
- Bea Abelairas Derrumbe en la zona nudista de Ponzos. La Voz Galicia, 7 March 2017.
- Valenzuela, P.; Domínguez-Cuesta, M.J.; Mora García, M.A.; Jiménez-Sánchez, M. Rainfall thresholds for the triggering of landslides considering previous soil moisture conditions (Asturias, NW Spain). Landslides 2018, 15, 273–282. [Google Scholar] [CrossRef]
- Wigmore, O.; Mark, B.; McKenzie, J.; Baraer, M.; Lautz, L. Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle. Remote Sens. Environ. 2019, 222, 104–118. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Gomez-Pazo, A.; Perez-Alberti, A.; Otero Pérez, X.L. Recent Evolution (1956–2017) of Rodas Beach on the Cíes Islands, Galicia, NW Spain. J. Mar. Sci. Eng. 2019, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Splinter, K.D.; Harley, M.D.; Turner, I.L. Remote sensing is changing our view of the coast: Insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 2018, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibić, I.; Furlani, S. Impact of the October 2018 storm Vaia on coastal boulders in the northern Adriatic Sea. Water 2019, 11, 2229. [Google Scholar] [CrossRef] [Green Version]
- Nagle-McNaughton, T.; Cox, R. Measuring change using quantitative differencing of repeat structure-from-motion photogrammetry: The effect of storms on coastal boulder deposits. Remote Sens. 2020, 12, 42. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Pinton, D.; Canestrelli, A.; Fantuzzi, L. A UAV-based dye-tracking technique to measure surface velocities over tidal channels and salt marshes. J. Mar. Sci. Eng. 2020, 8, 364. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L. Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sens. Environ. 2019, 223, 34–49. [Google Scholar] [CrossRef]
- Jaud, M.; Grasso, F.; Le Dantec, N.; Verney, R.; Delacourt, C.; Ammann, J.; Deloffre, J.; Grandjean, P. Potential of UAVs for monitoring mudflat morphodynamics (Application to the Sein e Estuary, France). ISPRS Int. J. Geo Inf. 2016, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Letortu, P.; Jaud, M.; Grandjean, P.; Ammann, J.; Costa, S.; Maquaire, O.; Davidson, R.; Le Dantec, N.; Delacourt, C. Examining high-resolution survey methods for monitoring cliff erosion at an operational scale. GIScience Remote Sens. 2017, 55, 457–476. [Google Scholar] [CrossRef]
- Muñoz Narciso, E.; García, H.; Sierra Pernas, C.; Pérez-Alberti, A. Study of geomorphological changes by high quality DEMs, obtained from UAVs-Structure from Motion in highest continental cliffs of Europe: A Capelada (Galicia, Spain). Geophys. Res. Abstr. EGU Gen. Assem. 2017, 19, 2017–2692. [Google Scholar] [CrossRef]
- Horacio, J.; Muñoz-Narciso, E.; Trenhaile, A.S.; Pérez-Alberti, A. Remote sensing monitoring of a coastal-valley earthflow in northwestern Galicia, Spain. Catena 2019, 178, 276–287. [Google Scholar] [CrossRef]
- Allison, R.S.; Johnston, J.M.; Craig, G.; Jennings, S. Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors 2016, 16, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. F. Crop. Res. 2017, 210, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Klosterman, S.; Melaas, E.; Wang, J.; Martinez, A.; Frederick, S.; O′Keefe, J.; Orwig, D.A.; Wang, Z.; Sun, Q.; Schaaf, C.; et al. Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography. Agric. For. Meteorol. 2018, 248, 397–407. [Google Scholar] [CrossRef]
Year | Zone | UAV Model | Camera Resolution | Spatial Resolution (cm) |
---|---|---|---|---|
1 July 2012 | Oia | Microdrones md4-200 | 10 MP | 1.80 |
22 July 2012 | Laxe Brava | Microdrones md4-200 | 10 MP | 1.50 |
20 May 2013 | Oia | Microdrones md4-200 | 10 MP | 1.50 |
8 May 2013 | Laxe Brava | Microdrones md4-200 | 10 MP | 1.50 |
28 March 2014 | Oia | Microdrones md4-200 | 17 MP | 1.80 |
9 June 2014 | Laxe Brava | Microdrones md4-200 | 17 MP | 1.50 |
2 March 2015 | Caamaño | Microdrones md4-200 | 17 MP | 1.40 |
23 May 2016 | Oia | Microdrones md4-200 | 20 MP | 1.80 |
5 August 2016 | Laxe Brava | Microdrones md4-200 | 20 MP | 1.30 |
26 May 2016 | Ponzos | Microdrones md4-200 | 20 MP | 5.00 |
11 September 2018 | Ponzos | DJI Phantom 4 Pro | 20 MP | 2.98 |
Period | Laxe Brava | Oia | Technique |
---|---|---|---|
2012–2013 | 17.5% | 53.0% | Moved boulders |
2013–2014 | 47.8% | 87.6% | Moved boulders |
2014–2016 | 117.97 ± 3.26 m3 | 1891.63 ± 170.13 m3 | Accretion (DoD) |
2014–2016 | 5259.29 ± 121.96 m3 | 430.55 ± 30.75 m3 | Erosion (DoD) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Pazo, A.; Pérez-Alberti, A. The Use of UAVs for the Characterization and Analysis of Rocky Coasts. Drones 2021, 5, 23. https://doi.org/10.3390/drones5010023
Gómez-Pazo A, Pérez-Alberti A. The Use of UAVs for the Characterization and Analysis of Rocky Coasts. Drones. 2021; 5(1):23. https://doi.org/10.3390/drones5010023
Chicago/Turabian StyleGómez-Pazo, Alejandro, and Augusto Pérez-Alberti. 2021. "The Use of UAVs for the Characterization and Analysis of Rocky Coasts" Drones 5, no. 1: 23. https://doi.org/10.3390/drones5010023
APA StyleGómez-Pazo, A., & Pérez-Alberti, A. (2021). The Use of UAVs for the Characterization and Analysis of Rocky Coasts. Drones, 5(1), 23. https://doi.org/10.3390/drones5010023