Comparative Assessment of Vegetation Removal for DTM Generation and Earthwork Volume Estimation Using RTK-UAV Photogrammetry and LiDAR Mapping
Highlights
- Combining a color-based vegetation index with a geometry-based filter greatly enhanced DTM accuracy; the ExGR + Lasground (new) combination achieved RMSE 0.179 m for UAV photogrammetry and 0.165 m for LiDAR.
- Both UAV-based methods showed reliable earthwork volume accuracy, reaching 100.9% for photogrammetry and 100.3% for LiDAR even in densely vegetated terrain.
- The integrated LiDAR + ExGR + Lasground (new) method is recommended for high-precision terrain modeling and construction surveying.
- UAV photogrammetry offers a cost-effective and efficient alternative when LiDAR use is limited by budget or operational conditions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Study Area and Survey Equipment
2.2.1. Study Area
2.2.2. Survey Equipment
2.3. VRS and GCPs Survey
2.4. Data Acquisition—UAV Photogrammetry
2.5. Data Acquisition—UAV LiDAR
2.6. Coordinate Adjustment of GCPs
2.7. Data Sampling and Preprocessing
3. Application of Vegetation Removal Techniques
3.1. Overview of Vegetation Removal Techniques
- Vegetation removal indices emphasizing the green channel: ExGR, GRVI, and VARI.
- Adaptive TIN (ATIN)-based ground extraction algorithm: Lasground (new), a TIN densification method implemented in LAStools, an open-source plugin for QGIS.
- Combined method: Application of the Lasground (new) algorithm to terrain data after the vegetation removal indices had been applied.
3.1.1. Excess Green Minus Red Index (ExGR)
3.1.2. Green-Red Vegetation Index (GRVI)
3.1.3. Visible Atmospherically Resistant Index (VARI)
3.1.4. QGIS LAStools Lasground (New) Algorithm
3.2. Qualitative Comparison of Method (Visual Analysis)
3.2.1. RGB Vegetation Index Application—UAV Photogrammetry
3.2.2. Lasground (New) Algorithm Application—UAV Photogrammetry
3.2.3. RGB Vegetation Index Application—UAV LiDAR
3.2.4. Lasground (New) Algorithm Application—UAV LiDAR
3.3. Estimation of Terrain Gaps—Kriging Interpolation Method
4. Results and Discussion
4.1. Accuracy Assessment of DTM Generation—UAV Photogrammetry
4.2. Accuracy Assessment of DTM Generation—UAV LiDAR
4.3. Accuracy Assessment of Earthwork Volume Calculation—UAV Photogrammetry
4.4. Accuracy Assessment of Earthwork Volume Calculation—UAV LiDAR
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siyam, Y.M. Precision in cross-sectional area calculations on earthwork determination. J. Surv. Eng. 1987, 113, 139–151. [Google Scholar] [CrossRef]
- Akgul, M.; Yurtseven, H.; Gulci, S.; Akay, A.E. Evaluation of UAV-and GNSS-based DEMs for earthwork volume. Arab. J. Sci. Eng. 2018, 43, 1893–1909. [Google Scholar] [CrossRef]
- Hong, S.E. Comparing efficiency of numerical cadastral surveying using total station and RTK-GPS. J. Korean Soc. Geo-Spat. Inf. Sci. 2007, 15, 87–96. [Google Scholar]
- Park, J.W.; Yeom, D.J.; Kang, T.K. Accuracy Analysis of Earthwork Volume Estimating for Photogrammetry, TLS, MMS. J. Korean Soc. Ind. Converg. 2021, 24, 453–465. [Google Scholar]
- Lee, K.R.; Lee, W.H. Earthwork volume calculation, 3D model generation, and comparative evaluation using vertical and high-oblique images acquired by unmanned aerial vehicles. Aerospace 2022, 9, 606. [Google Scholar] [CrossRef]
- Lin, Y.; Hyyppä, J.; Jaakkola, A. Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci. Remote Sens. Lett. 2010, 8, 426–430. [Google Scholar] [CrossRef]
- Shin, Y.S.; Choi, S.P.; Kim, J.S.; Kim, U.N. A Filtering Technique of Terrestrial LiDAR Data on Sloped Terrain. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2012, 30, 529–538. [Google Scholar] [CrossRef]
- Lang, M.W.; McCarty, G.W. Lidar intensity for improved detection of inundation below the forest canopy. Wetlands 2009, 29, 1166–1178. [Google Scholar] [CrossRef]
- Lang, M.W.; Kim, V.; McCarty, G.W.; Li, X.; Yeo, I.; Huang, C. Improved detection of inundation below the forest canopy using normalized LiDAR intensity data. Remote Sens. 2020, 12, 707. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Walker, J.; Brown, O.; Myshak, S. Earthwork volumetrics with an unmanned aerial vehicle and softcopy photogrammetry. J. Surv. Eng. 2015, 141, 06014003. [Google Scholar] [CrossRef]
- Seong, J.H.; Han, Y.K.; Lee, W.H. Earth-Volume Measurement of Small Area Using Low-cost UAV. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2018, 36, 279–286. [Google Scholar]
- Park, J.K.; Jung, K.Y. Accuracy evaluation of earthwork volume calculation according to terrain model generation method. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2021, 39, 47–54. [Google Scholar]
- Kang, H.S.; Lee, K.R.; Shin, H.G.; Kim, D.H.; Kim, J.O.; Lee, W.H. Accuracy Evaluation of Earthwork Volume Calculation According to Terrain Model Generation Method using RTK-UAV. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2024, 42, 541–550. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, K.R.; Shin, H.G.; Kim, J.O.; Lee, W.H. Accuracy Assessment of Ground Extraction and Earthwork Volume Estimation through UAV LiDAR Reflectance Intensity Filtering Based on Unsupervised Learning Algorithm. KSCE J. Civ. Environ. Eng. Res. 2025, 45, 265–276. [Google Scholar]
- Scaioni, M.; Höfle, B.; Baungarten Kersting, A.P.; Barazzetti, L.; Previtali, M.; Wujanz, D. Methods from information extraction from lidar intensity data and multispectral lidar technology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1503–1510. [Google Scholar] [CrossRef]
- Yu, H.; Lu, X.; Ge, X.; Cheng, G. Digital terrain model extraction from airborne LiDAR data in complex mining area. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–6. [Google Scholar]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing filtering techniques for removing vegetation from UAV-based photogrammetric point clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef]
- Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [Google Scholar] [CrossRef]
- Kim, E.M.; Cho, D.Y. Comprehensive comparisons among LIDAR fitering algorithms for the classification of ground and non-ground points. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2012, 30, 39–48. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, D.H. Vegetation filtering techniques for LiDAR data of levees using combined filters with morphology and color. J. Korea Water Resour. Assoc. 2023, 56, 139–150. [Google Scholar]
- Wei, L.; Yang, B.; Jiang, J.; Cao, G.; Wu, M. Vegetation filtering algorithm for UAV-borne lidar point clouds: A case study in the middle-lower Yangtze River riparian zone. Int. J. Remote Sens. 2017, 38, 2991–3002. [Google Scholar] [CrossRef]
- ISPRS Comparison of Filters. Available online: https://www.itc.nl/isprs/wgIII-3/filtertest/report05082003.pdf (accessed on 25 August 2025).
- Gou, J.J.; Lee, H.J.; Park, J.S.; Jang, S.J.; Lee, J.H.; Kim, D.W.; Song, I.H. Comparative Analysis of DTM Generation Method for Stream Area Using UAV-Based LiDAR and SfM. Korean Soc. Agric. Eng. 2024, 66, 1–14. [Google Scholar]
- Gruszczyński, W.; Puniach, E.; Ćwiąkała, P.; Matwij, W. Application of convolutional neural networks for low vegetation filtering from data acquired by UAVs. ISPRS J. Photogramm. Remote Sens. 2019, 158, 1–10. [Google Scholar] [CrossRef]
- Gruszczyński, W.; Matwij, W.; Ćwiąkała, P. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS J. Photogramm. Remote Sens. 2017, 126, 168–179. [Google Scholar] [CrossRef]
- DJI. Matrice 300 RTK Support Page (Specs). Available online: https://www.dji.com/support/product/matrice-300?backup_page=index&target=us (accessed on 14 December 2025).
- DJI. D-RTK 2 High Precision GNSS Mobile Station Specs. Available online: https://www.dji.com/d-rtk-2/info?backup_page=index&target=us (accessed on 14 December 2025).
- DJI. Zenmuse L1 Support Page (Specs). Available online: https://www.dji.com/support/product/zenmuse-l1?backup_page=index&target=us (accessed on 14 December 2025).
- Cho, J.; Lee, J.; Park, J. Large-Scale Earthwork Progress Digitalization Practices Using Series of 3D Models Generated from UAS Images. Drones 2021, 5, 147. [Google Scholar] [CrossRef]
- Elkhrachy, I. Accuracy assessment of low-cost Unmanned Aerial Vehicle (UAV) photogrammetry. Alex. Eng. J. 2021, 60, 5579–5590. [Google Scholar] [CrossRef]
- Guo, Q.; Li, W.; Yu, H.; Alvarez, O. Effects of topographic variability and lidar sampling density on several DEM interpolation methods. Photogramm. Eng. Remote Sens. 2010, 76, 701–712. [Google Scholar] [CrossRef]
- White, J.C.; Woods, M.; Krahn, T.; Papasodoro, C.; Bélanger, D.; Onafrychuk, C. Evaluating the capacity of single photon lidar for terrain characterization under a range of forest conditions. Remote Sens. Environ. 2021, 252, 112169. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Kong, S.; Shi, F.; Wang, C.; Xu, C. Point cloud generation from multiple angles of voxel grids. IEEE Access 2019, 7, 160436–160448. [Google Scholar] [CrossRef]
- Balta, H.; Velagic, J.; Bosschaerts, W.; De Cubber, G.; Siciliano, B. Fast statistical outlier removal based method for large 3D point clouds of outdoor environments. IFAC-Pap. 2018, 51, 348–353. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Ponti, M.P. Segmentation of low-cost remote sensing images combining vegetation indices and mean shift. IEEE Geosci. Remote Sens. Lett. 2012, 10, 67–70. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine vision detection parameters for plant species identification. Precis. Agric. Biol. Qual. Anon. SPIE 1999, 3543, 327–335. [Google Scholar]
- Meyer, G.E.; Neto, J.C.; Jones, D.D.; Hindman, T.W. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 2004, 42, 161–180. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Eng, L.S.; Ismail, R.; Hashim, W.; Baharum, A. The use of VARI, GLI, and VIgreen formulas in detecting vegetation in aerial images. Int. J. Technol. 2019, 10, 1385–1394. [Google Scholar] [CrossRef]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110–117. [Google Scholar]
- Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Measurement 2019, 133, 99–111. [Google Scholar] [CrossRef]
- Montealegre, A.L.; Lamelas, M.T.; De La Riva, J. A comparison of open-source LiDAR filtering algorithms in a Mediterranean forest environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4072–4085. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Contreras, M.; Aracena, P.; Chung, W. Improving accuracy in earthwork volume estimation for proposed forest roads using a high-resolution digital elevation model. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2012, 33, 125–142. [Google Scholar]
























| GNSS Data Receiver (VRS Survey) | GNSS Data Processor | |||
|---|---|---|---|---|
| Trimble R8s | Juno T41/5 | |||
| Type | Specification | Type | Specification | |
| Channels | Operating System | Android 4.1 Jellybean | ||
| Weight | (Including Battery) | Weight | ||
| Satellite Signals (GPS) | L1C/A, LIC, L2C, L2E, L5 | RAM | ||
| Network-RTK | Horizontal | RMS | Storage | |
| Vertical | RMS | Processor | ||
| UAV | Single-Baseline RTK Station | ||
|---|---|---|---|
| Matrice 300 RTK | D-RTK 2 Mobile Station | ||
| Flight Altitude | ≤7000 m | Satellite Signal (GPS) | L1, C/A, L2, L5 |
| Flight Time | ≤55 min | Positioning Precision (Single) | Vertical: 3.0 m |
| Horizontal: 1.5 m | |||
| Hovering Accuracy (GPS) | Vertical: ±0.1 m | Positioning Precision (RTK) | Vertical: 2 cm + 1 ppm |
| Horizontal: ±0.1 m | Horizontal: 1 cm + 1 ppm | ||
| RTK Positioning Accuracy | Vertical: 1.5 cm + 1 ppm | Size | 168 × 168 × 1708 mm |
| Horizontal: 1 cm + 1 ppm | |||
| Speed | ≤17 m/s | Memory Volume | 16 GB |
| Weight | 3.6 kg (Excluding Battery) | Weight | 5.7 kg (Excluding Tripod) |
| 6.3 kg (Including Battery) | 8.1 kg (Including Tripod) | ||
| Sensor (Platform) | ||||
|---|---|---|---|---|
| Zenmuse L1 | ||||
| RGB Optical (Photogrammetry) | LiDAR | |||
| Category | Detail | Category | Detail | |
| Resolution | 3840 2160 Pixel | Measurement Accuracy | ||
| File Format | JPEG | Detection Range | ||
| F-Stop | f/2.8~f/11 | Scan Mode | Repeat/Non-Repeat Mode | |
| FOV (Field Of View) | FOV | Repeat | Vertical: | |
| Horizontal: | ||||
| Focal Length | Non- Repeat | Vertical: | ||
| Horizontal: | ||||
| ISO | 100 | Number of Returns Wavelength | 3 (Maximum) | |
| Shutter Speed | 1/2000-8 s (Mechanical) | Real-Time Point Cloud Coloring Modes | True Color; Coloring by Reflectivity; Coloring by Elevation | |
| Effective Pixels | 20 | |||
| Photo Size | 4864 3648 | Laser Safety | Class 1 | |
| Sensor Size | Size | 152 110 169 | ||
| Size | 152 110 169 | Weight | 930 10 | |
| Weight | 930 10 | |||
| P.T No. | Control Points (VRS) | UAV Photogrammetry | Residual (Original) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| X | Y | Z | X | Y | Z | X | Y | Z | |
| 1 | 283,044.75 | 428,481.03 | 266.10 | 283,044.77 | 428,482.36 | 294.92 | 0.02 | 1.33 | 28.82 |
| 2 | 283,023.27 | 428,525.33 | 266.03 | 283,023.48 | 428,526.55 | 294.89 | 0.21 | 1.22 | 28.86 |
| 3 | 282,992.60 | 428,588.92 | 266.11 | 282,992.78 | 428,590.14 | 294.92 | 0.18 | 1.22 | 28.81 |
| 4 | 282,979.68 | 428,583.93 | 261.28 | 282,979.95 | 428,585.11 | 290.20 | 0.27 | 1.18 | 28.92 |
| 5 | 282,975.24 | 428,568.48 | 256.54 | 282,975.43 | 428,569.67 | 285.56 | 0.19 | 1.19 | 29.02 |
| 6 | 283,011.28 | 428,512.63 | 260.08 | 283,011.45 | 428,513.98 | 289.04 | 0.17 | 1.35 | 28.96 |
| 7 | 282,974.23 | 428,545.83 | 252.39 | 282,974.41 | 428,547.01 | 281.40 | 0.18 | 1.80 | 29.01 |
| 8 | 282,990.70 | 428,510.65 | 252.17 | 282,990.83 | 428,511.86 | 281.19 | 0.13 | 1.21 | 29.02 |
| Total RMSE (Original) | 0.17 | 1.23 | 28.93 | ||||||
| Total RMSE (Adjustment) | 0.06 | 0.07 | 0.03 | ||||||
| P.T No. | Control Points (VRS) | UAV LiDAR | Residual (Original) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| X | Y | Z | X | Y | Z | X | Y | Z | |
| 1 | 283,044.75 | 428,481.03 | 266.10 | 283,044.13 | 428,480.53 | 266.06 | 0.62 | 0.50 | 0.04 |
| 2 | 283,023.27 | 428,525.33 | 266.03 | 283,023.37 | 428,525.13 | 265.88 | 0.10 | 0.20 | 0.15 |
| 3 | 282,992.60 | 428,588.92 | 266.11 | 282,992.38 | 428,588.41 | 266.02 | 0.22 | 0.51 | 0.09 |
| 4 | 282,979.68 | 428,583.93 | 261.28 | 282,979.85 | 428,583.85 | 261.32 | 0.17 | 0.43 | 0.06 |
| 5 | 282,975.24 | 428,568.48 | 256.54 | 282,975.19 | 428,568.50 | 256.46 | 0.09 | 0.50 | 0.04 |
| 6 | 283,011.28 | 428,512.63 | 260.08 | 283,011.65 | 428,513.00 | 260.50 | 0.37 | 0.37 | 0.42 |
| 7 | 282,974.23 | 428,545.83 | 252.39 | 282,974.53 | 428,545.44 | 252.44 | 0.30 | 0.44 | 0.05 |
| 8 | 282,990.70 | 428,510.65 | 252.17 | 282,990.85 | 428,510.68 | 252.28 | 0.15 | 0.03 | 0.11 |
| Total RMSE (Original) | 0.30 | 0.40 | 0.17 | ||||||
| Total RMSE (Adjustment) | 0.11 | 0.06 | 0.06 | ||||||
| Category | UAV Photogrammetry | UAV LiDAR |
|---|---|---|
| Number of Points (Total) | 102,227 pts | 114,162 pts |
| 0.1 | 20,799 pts | 4880 pts |
| Ratio | 20.35% | 4.27% |
| UAV Photogrammetry | ||||||
|---|---|---|---|---|---|---|
| Indices (Techniques) | Height Difference (m) | RMSE (m) | MAE (m) | |||
| Max | Min | Mean | St. Dev | |||
| Raw Point Cloud | 2.9749 | −0.3226 | 0.2662 | 0.3085 | 0.4074 | 0.2881 |
| ExGR | 1.1408 | −0.9156 | 0.0849 | 0.2139 | 0.2824 | 0.2385 |
| GRVI | 1.1984 | −1.0968 | −0.1603 | 0.2393 | 0.2727 | 0.2264 |
| VARI | 1.0606 | −1.0968 | −0.2010 | 0.2215 | 0.2912 | 0.2439 |
| Lasground (new) | 2.0395 | −0.8681 | 0.1634 | 0.3144 | 0.3253 | 0.2364 |
| ExGR + Lasground (new) | 1.1242 | −0.7666 | −0.0075 | 0.1792 | 0.1793 | 0.1269 |
| GRVI + Lasground (new) | 1.1209 | 0.8142 | −0.0869 | 0.1821 | 0.2017 | 0.1465 |
| VARI + Lasground (new) | 1.1086 | −0.8165 | −0.0904 | 0.1804 | 0.2018 | 0.1471 |
| UAV LiDAR | ||||||
|---|---|---|---|---|---|---|
| Indices (Techniques) | Height Difference (m) | RMSE (m) | MAE (m) | |||
| Max | Min | Mean | St. Dev | |||
| Raw Point Cloud | 2.3925 | −0.4453 | 0.1125 | 0.2784 | 0.3117 | 0.2088 |
| ExGR | 2.2450 | −0.9365 | 0.1115 | 0.2073 | 0.2354 | 0.1643 |
| GRVI | 2.0573 | −0.6845 | 0.0549 | 0.1242 | 0.1913 | 0.1242 |
| VARI | 1.7992 | −0.6339 | 0.0275 | 0.1787 | 0.1808 | 0.1198 |
| Lasground (new) | 2.1750 | −0.3577 | 0.0810 | 0.1542 | 0.2322 | 0.1542 |
| ExGR + Lasground (new) | 1.4328 | −0.3715 | 0.0377 | 0.1104 | 0.1674 | 0.1104 |
| GRVI + Lasground (new) | 1.4016 | −0.5111 | −0.0194 | 0.1098 | 0.1652 | 0.1098 |
| VARI + Lasground (new) | 1.3871 | −0.6871 | −0.0040 | 0.1132 | 0.1649 | 0.1132 |
| UAV Photogrammetry | |||||
|---|---|---|---|---|---|
| Indices (Techniques) | Area () | Earthwork Volume () | Earthwork Volume Difference () | Total Earthwork Volume Accuracy (%) | |
| 2D | 3D | ||||
| VRS (Ground Truth) | 3680.37 | 4022.78 | 53,179.70 | 0.00 | 100.0 |
| Raw Point Cloud | 3671.79 | 4114.78 | 58,183.83 | 5004.13 | 109.4 |
| ExGR | 3668.25 | 4118.62 | 55,125.38 | 1945.68 | 103.7 |
| GRVI | 3676.14 | 4162.21 | 55,125.39 | 1945.69 | 103.7 |
| VARI | 3676.14 | 4204.09 | 55,570.56 | 2390.86 | 104.5 |
| Lasground (new) | 3676.50 | 4343.49 | 55,763.62 | 2583.92 | 104.9 |
| ExGR + Lasground (new) | 3671.09 | 4033.26 | 53,651.98 | 472.28 | 100.9 |
| GRVI + Lasground (new) | 3673.47 | 4036.20 | 53,577.92 | 398.22 | 100.7 |
| VARI + Lasground (new) | 3669.05 | 4027.12 | 53,999.27 | 819.57 | 101.5 |
| UAV LiDAR | |||||
|---|---|---|---|---|---|
| Indices (Techniques) | Area () | Earthwork Volume () | Earthwork Volume Difference () | Total Earthwork Volume Accuracy (%) | |
| 2D | 3D | ||||
| VRS (Ground Truth) | 3680.37 | 4022.78 | 53,179.70 | 0.00 | 100.0 |
| Raw Point Cloud | 3676.95 | 4189.32 | 57,497.57 | 4299.87 | 108.1 |
| ExGR | 3679.48 | 4099.87 | 54,005.12 | 825.42 | 101.6 |
| GRVI | 3680.50 | 4101.00 | 55,043.26 | 1863.56 | 103.5 |
| VARI | 3676.63 | 4091.57 | 54,785.74 | 1606.04 | 103.0 |
| Lasground (new) | 3677.26 | 4100.57 | 55,380.26 | 2200.56 | 104.1 |
| ExGR + Lasground (new) | 3678.83 | 4043.98 | 53,337.81 | 158.11 | 100.3 |
| GRVI + Lasground (new) | 3679.84 | 4043.58 | 53,637.85 | 458.15 | 100.9 |
| VARI + Lasground (new) | 3679.88 | 4044.47 | 53,554.92 | 375.22 | 100.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kang, H.; Khoshelham, K.; Shin, H.; Lee, K.; Lee, W. Comparative Assessment of Vegetation Removal for DTM Generation and Earthwork Volume Estimation Using RTK-UAV Photogrammetry and LiDAR Mapping. Drones 2026, 10, 30. https://doi.org/10.3390/drones10010030
Kang H, Khoshelham K, Shin H, Lee K, Lee W. Comparative Assessment of Vegetation Removal for DTM Generation and Earthwork Volume Estimation Using RTK-UAV Photogrammetry and LiDAR Mapping. Drones. 2026; 10(1):30. https://doi.org/10.3390/drones10010030
Chicago/Turabian StyleKang, Hyeongseok, Kourosh Khoshelham, Hyeongil Shin, Kirim Lee, and Wonhee Lee. 2026. "Comparative Assessment of Vegetation Removal for DTM Generation and Earthwork Volume Estimation Using RTK-UAV Photogrammetry and LiDAR Mapping" Drones 10, no. 1: 30. https://doi.org/10.3390/drones10010030
APA StyleKang, H., Khoshelham, K., Shin, H., Lee, K., & Lee, W. (2026). Comparative Assessment of Vegetation Removal for DTM Generation and Earthwork Volume Estimation Using RTK-UAV Photogrammetry and LiDAR Mapping. Drones, 10(1), 30. https://doi.org/10.3390/drones10010030

