A General Stereoselective Approach to 1,2,4-Triazepane-3-thiones/ones via Reduction or Reductive Alkylation of 2,4,5,6-Tetrahydro-3H-1,2,4-triazepine-3-thiones/ones †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Acknowledgements
References and Note
- Sharp, J.T. Seven-membered Rings with Two or More Heteroatoms. In Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Eds.; Pergamon: Oxford, UK, 1984; Volume 7, pp. 593–651. [Google Scholar]
- Tsuchiya, T. Seven-membered Rings with Three Heteroatoms 1,2,4. In Comprehensive Heterocyclic Chemistry II; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Elsevier: Oxford, UK, 1996; Volume 9, pp. 309–331. [Google Scholar]
- Yranzo, G.I.; Moyano, E.L. Seven-membered Rings with Three Heteroatoms 1,2,4. In Comprehensive Heterocyclic Chemistry III; Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., Taylor, R.J.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 13, pp. 399–430. [Google Scholar]
- Peet, N.P. Monocyclic and Condensed Triazepines and Tetrazepines. In The Chemistry of Heterocyclic Compounds; Rosowsky, A., Ed.; John Wiley: New York, NY, USA, 1984; Volume 43, Part 2; pp. 719–842. [Google Scholar]
- Léna, G.; Guichard, G. Synthetic Methods for the Preparation of Triazepandiones and Review of their Applications. Curr. Org. Chem. 2008, 12, 813–835. [Google Scholar] [CrossRef]
- Elattar, K.M.; Abozeid, M.A.; Mousa, I.A.; El-Mekabaty, A. Advances in 1,2,4-triazepines chemistry. RSC Adv. 2015, 5, 106710–106753. [Google Scholar] [CrossRef]
- McDonald, I.M.; Austin, C.; Buck, I.M.; Dunstone, D.J.; Gaffen, J.; Griffin, E.; Harper, E.A.; Hull, R.A.D.; Kalindjian, S.B.; Linney, I.D.; et al. Discovery and Characterization of Novel, Potent, Non-Peptide Parathyroid Hormone-1 Receptor Antagonists. J. Med. Chem. 2007, 50, 4789–4792. [Google Scholar] [CrossRef]
- McDonald, I.M.; Austin, C.; Buck, I.M.; Dunstone, D.J.; Griffin, E.; Harper, E.A.; Hull, R.A.D.; Kalindjian, S.B.; Linney, I.D.; Low, C.M.R.; et al. Novel, Achiral 1,3,4-Benzotriazepine Analogues of 1,4-Benzodiazepine-Based CCK2 Antagonists That Display High Selectivity over CCK1 Receptors. J. Med. Chem. 2006, 49, 2253–2261. [Google Scholar] [CrossRef]
- Kaur, K.; Talele, T.T. 3D QSAR studies of 1,3,4-benzotriazepine derivatives as CCK2 receptor antagonists. J. Mol. Graph. Model. 2008, 27, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, M.; Kumarasamy, C.; Chokkalingam, U.; Mohan, P.S. Synthesis, antioxidant and toxicological study of novel pyrimido quinoline derivatives from 4-hydroxy-3-acyl quinolin-2-one. Bioorg. Med. Chem. Lett. 2010, 20, 7147–7151. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Abo-Kul, M.; Soltan, M.K.; Barakat, W.; Helal, A.S. Synthesis and Biological Screening of New Derivatives of 2,3-dihydro quinazolin-4(1H)-one and Benzotriazepin- 5(2H)-one for Central Nervous System Activity. Med. Chem. 2014, 4, 351–356. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Baraka, M.M.; El-Sabbagh, O.I.; Kothayer, H. Synthesis of new benzotriazepin-5(2H)-one derivatives of expected antipsychotic activity. Med. Chem. Res. 2013, 22, 1488–1496. [Google Scholar] [CrossRef]
- Zhao, C.; Sham, H.L.; Sun, M.; Stoll, V.S.; Stewart, K.D.; Lin, S.; Mo, H.; Vasavanonda, S.; Saldivar, A.; Park, C.; et al. Synthesis and activity of N-acyl azacyclic urea HIV-1 protease inhibitors with high potency against multiple drug resistant viral strains. Bioorg. Med. Chem. Lett. 2005, 15, 5499–5503. [Google Scholar] [CrossRef] [PubMed]
- Sham, H.L.; Zhao, C.; Stewart, K.D.; Betebenner, D.A.; Lin, S.; Park, C.H.; Kong, X.-P.; Rosenbrook, W.; Herrin, T.; Madigan, D.; et al. A Novel, Picomolar Inhibitor of Human Immunodeficiency Virus Type 1 Protease. J. Med. Chem. 1996, 39, 392–397. [Google Scholar] [CrossRef]
- Hodge, C.N.; Fernandez, C.H.; Jadhav, P.K.; Lam, P.Y. Preparation of substituted caprolactams and derivatives useful for treatment of HIV disease. WO 9422840, 1994. Chem. Abstr. 1994, 123, 33104. [Google Scholar]
- Lantzsch, R.; Arlt, D. Herstellung und Reaktionen von 1,1-Dimethyl-3-oxobutyl-isocyanat. Synthesis 1977, 11, 756–757. [Google Scholar] [CrossRef]
- Mosher, W.A.; Toothill, R.B. Investigation of Routes to Indeno[2,1-f]-2H-1,2,4-triazepinediones. J. Heterocycl. Chem. 1971, 8, 209–214. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Grigoriev, M.S.; Shutalev, A.D. Synthesis of aryl substituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones/ones starting from chalcone-derived β-isothiocyanato ketones. Tetrahedron 2016, 72, 7952–7967. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Shutalev, A.D. Base-promoted ring expansion of 3-aminopyrimidine-2-thiones into 1,2,4-triazepine-3-thiones. Tetrahedron 2016, 72, 2560–2573. [Google Scholar] [CrossRef]
- Danilkina, N.A.; Mikhaylov, L.E.; Ivin, B.A. Reaction of Acetylenedicarboxylic Acids Esters with 4,5-Dihydro-1H-pyrazole-1-carbothioamides and 3,4,5,6-Tetrahydro-2H-1,2,4-triazepine-3-thiones. Chem. Heterocycl. Compd. 2011, 47, 886–900. [Google Scholar] [CrossRef]
- Rezessy, B.; Zubovics, Z.; Kovács, J.; Tóth, G. Synthesis and structure elucidation of new thiazolotriazepines. Tetrahedron 1999, 55, 5909–5922. [Google Scholar] [CrossRef]
- Richter, P.; Steiner, K. Chalcone as Starting Material for Synthesis of 1,2,4-Triazepines. In Studies in Organic Chemistry; van der Plas, H.C., Ötvös, L., Simonyi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 18, pp. 217–220. [Google Scholar]
- Neidlein, R.; Ober, W.D. Synthesen von Siebenerringsystemen aus substituierten Isothiocyanaten und Hydrazinen. Monatsh. Chem. 1976, 107, 1251–1258. [Google Scholar] [CrossRef]
- Zigeuner, G.; Fuchsgruber, A.; Wede, F. Notiz zur Struktur des Umsetzungsproduktes von 4-Isothiocyanato-4-methyl-2-pentanon mit Hydrazin—Uber das 2,4,5,6-Tetrahydro-5,5,7-trimethyl- 3H-1,2,4-triazepin-3-thion. Monatsh. Chem. 1975, 106, 1495–1497. [Google Scholar] [CrossRef]
- Hassan, M.M.; Othman, E.S.; Abass, M. 3-Acetyl-4-methylthioquinolin-2(1H)-one as useful synthon intermediate for synthesis of some new quinolinones. Res. Chem. Intermed. 2013, 39, 1209–1122. [Google Scholar] [CrossRef]
- Chaudhary, A.; Joshi, S.C.; Singh, R.V. Studies on Therapeutically Relevant Tin(II) and Lead(II) Complexes of Schiff Base Macrocyclic Ligands Containing Thiosemicarbazone Moiety. Main Group Met. Chem. 2004, 27, 59–70. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; El-Gendy, Z.M.; Allimony, H.A.; Othman, E.S. New Quinolones and Naphthyridinones Bearing Heterocyclic Rings. Chem. Papers 1999, 53, 53–64. [Google Scholar]
- Hasnaoui, A.; Lavergne, J.-P.; Viallefont, P. Condensation des composés β-dicarbonylés avec les thiosemicarbazides. Recl. Trav. Chim. Pays-Bas 1980, 99, 301–306. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Lavergne, J.-P.; Viallefont, P. Syntheses de nouvelles triazépines-1,2,4. J. Heterocycl. Chem. 1978, 15, 71–75. [Google Scholar] [CrossRef]
- Stanovnik, B.; Tišler, M. Zur Reaktion von 1,1,3,3-Tetraäthoxypropan mit Thiosemicarbaziden. Naturwissenschaften 1965, 52, 207. [Google Scholar] [CrossRef]
- Losse, G.; Farr, W. Synthese und Reaktionen der Heptriazinone. J. Prakt. Chem. 1959, 8, 298–305. [Google Scholar] [CrossRef]
- Ebnöther, A.; Jucker, E.; Rissi, E.; Rutschmann, J.; Schreier, E.; Steiner, R.; Süess, R.; Vogel, A. Über Azetidin-2,4-dione (Malonimide). Helv. Chim. Acta 1959, 42, 918–955. [Google Scholar] [CrossRef]
- Losse, G.; Hessler, W.; Barth, A. Ringschlussreaktionen mit Thiosemicarbaziden. Chem. Ber. 1958, 91, 150–157. [Google Scholar] [CrossRef]
- Seebacher, W.; Michl, G.; Weis, R. Synthesis of new triazepinethiones. Tetrahedron Lett. 2002, 43, 7481–7483. [Google Scholar] [CrossRef]
- Hassan, A.A.; Bebair, T.M.; El-Gamal, M. Synthesis of pyrazolylthiazole and pyrazolyl-1,2,4-triazepine derivatives. J. Chem. Res. 2014, 38, 27–31. [Google Scholar] [CrossRef]
- Aly, A.A.; Hassan, A.A.; El-Sheref, E.M.; Mohamed, M.A.; Brown, A.B. Conventional and Microwave Irradiation Assisted Synthesis of New 1,2,4-Triazepine-3-thiones. J. Heterocycl. Chem. 2008, 45, 521–526. [Google Scholar] [CrossRef]
- El-Helby, A.A.; Amin, M.A.; El-Sawah, M.M.; Bayoni, A.H.; El-Azab, A.S.; Sherbiny, F.F. Synthesis and Microbiological Testing of Some New Derivatives of Compounds Containing Active Methylene Group. J. Saudi Chem. Soc. 2006, 10, 77–93. [Google Scholar]
- Abdel-Ghany, H.; Khodairy, A.; Moustafa, H.M. Novel Synthesis of Some Spiro Heterocycles Derived from 3-Hydroxy-3-(2-oxocyclohexyl)-indolin-2-one. Synth. Commun. 2000, 30, 1257–1268. [Google Scholar] [CrossRef]
- Kobayashi, M.; Tanaka, J.; Katori, T.; Marsuura, M.; Yamashita, M.; Kitagawa, I. The Absolute Stereostructure of Swinholide A, a Potent Cytotoxic Dimeric Macrolide from the Okinawan Marine Sponge Theonella swinhoei. Chem. Pharm. Bull. 1990, 38, 2409–2418. [Google Scholar] [CrossRef]
- Hosmane, R.S.; Bhadti, V.S.; Lim, B.B. Synthesis of a Novel Ring-Expanded Xanthine Analogue and Several Methyl or Benzyl Derivatives Containing the 5:7-Fused Imidazo[4,5-e][1,2,4]triazepine Ring System. Synthesis 1990, 1990, 1095–1100. [Google Scholar] [CrossRef]
- Trafimova, L.A.; Zimin, M.O.; Shutalev, A.D. Thiocarbamate-based synthesis of 2,4,5,6-tetrahydro-3H- 1,2,4-triazepine-3-thiones. J. Chem. Res. 2017, 41, 149–156. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Shutalev, A.D. Different modes of acid-catalyzed cyclization of 4-(γ-oxoalkyl)semicarbazide hydrazones: 7-membered versus 14-membered cyclic semicarbazones formation. Tetrahedron 2015, 71, 9528–9543. [Google Scholar] [CrossRef]
- Losse, G.; Uhlig, H. Neue Siebengliedrige Heterocyclen auf Thiosemicarbazidbasis. Chem. Ber. 1957, 90, 257–260. [Google Scholar] [CrossRef]
- Losse, G.; Wottgen, E.; Just, H. Substituierte 7gliedrige Heterocyclen mit mehreren Heteroatomen. J. Prakt. Chem. 1958, 7, 28–37. [Google Scholar] [CrossRef]
- Hutchins, R.O.; Hutchins, M.K. Reduction of C=N to CHNH by Metal Hydrides. In Comprehensive Organic Synthesis; Trost, B.M., Fleming, I., Eds.; Pergamon: Oxford, UK, 1991; Volume 8, pp. 25–78. [Google Scholar]
- Hemmer, R.; Lürken, W. Amine. In Houben-Weyl Methods of Organic Chemistry; Thieme: Stuttgart, Germany, 1992; Volume E16d, pp. 646–1234. [Google Scholar]
- Andersson, P.G.; Munslow, I.J. (Eds.) Modern Reduction Methods; Wiley-VCH Verlag: Weinheim, Germany, 2008. [Google Scholar]
- Nugenta, T.C.; El-Shazly, M. Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Adv. Synth. Catal. 2010, 352, 753–819. [Google Scholar] [CrossRef]
- Layer, R.W. The Chemistry of Imines. Chem. Rev. 1963, 63, 489–510. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Verma, S.S.; Pandey, J.; Tiwar, V.K. Recent development on catalytic reductive amination and applications. Curr. Org. Chem. 2008, 12, 1093–1115. [Google Scholar] [CrossRef]
- Hutchins, R.O.; Hutchins, M.K.; Crawley, M.L. Sodium Cyanoborohydride. In e-EROS: Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: Weinheim, Germany, 2007. [Google Scholar] [CrossRef]
- Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd ed.; Wiley-VCH: New York, NY, USA, 1997. [Google Scholar]
- Lane, C.F. Sodium Cyanoborohydride—A Highly Selective Reducing Agent for Organic Functional Groups. Synthesis 1975, 3, 135–146. [Google Scholar] [CrossRef]
- Hutchins, R.O.; Natale, N.R. Cyanoborohydride. Utility and Applications in Organic Synthesis. A Review. Org. Prep. Proced. Int. 1979, 11, 201–246. [Google Scholar] [CrossRef]
- Borch, R.F.; Bernstein, M.D.; Durst, H.D. The Cyanohydridoborate Anion as a Selective Reducing Agent. J. Am. Chem. Soc. 1971, 93, 2897–2904. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Grigoriev, M.S.; Shutalev, A.D. Nucleophile-Mediated Ring Expansion of 5-Acyl- substituted 4-Mesyloxymethyl-1,2,3,4-tetrahydropyrimidin-2-ones in the Synthesis of 7-Membered Analogues of Biginelli Compounds and Related Heterocycles. J. Org. Chem. 2017, 82, 8085–8110. [Google Scholar] [CrossRef] [PubMed]
- Fesenko, A.A.; Shutalev, A.D. 2,3-Dihydro-1H-1,3-diazepin-2-ones: synthesis and novel rearrangements into pyrrole derivatives. Tetrahedron Lett. 2014, 55, 1416–1420. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Trafimova, A.A.; Shutalev, A.D. Synthesis of functionalized tetrahydro-1,3-diazepin-2-ones and 1-carbamoyl-1H-pyrroles via ring expansion and ring expansion/ring contraction of tetrahydropyrimidines. Org. Biomol. Chem. 2012, 10, 447–462. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Shutalev, A.D. Nucleophile-mediated ring expansion of 4-chloromethyl- and 4-mesyloxymethyl-5-tosyl-1,2,3,4-tetrahydropyrimidin-2-ones to 6-tosyl-2,3,4,5-tetrahydro-1H-1,3- diazepin- 2-ones: the effect of the leaving group and the substituent at C6. Tetrahedron 2011, 67, 6876–6882. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Tullberg, M.L.; Shutalev, A.D. General approach to 6-tosyl-2,3,4,5-tetrahydro- 1H-1,3-diazepin-2-ones via nucleophile-mediated ring expansion of tetrahydropyrimidines. Tetrahedron 2009, 65, 2344–2350. [Google Scholar] [CrossRef]
- Solovyev, P.A.; Fesenko, A.A.; Shutalev, A.D. A new synthesis of 4- or/and 6-CF3-containing hexahydro- and 1,2,3,4-tetrahydropyrimidin-2-ones. J. Fluor. Chem. 2016, 182, 28–33. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Shutalev, A.D. A novel access to pyrido[4,3-d]pyrimidine scaffold via Staudinger/intramolecular aza-Wittig reaction of 5-acyl-4-(β-azidoalkyl)-1,2,3,4-tetrahydropyrimidin- 2-ones. Tetrahedron 2014, 70, 5398–5414. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Shutalev, A.D. Synthesis of γ-Azido-β-Ureido Ketones and their Transformation into Functionalized Pyrrolines and Pyrroles via Staudinger/aza-Wittig Reaction. J. Org. Chem. 2013, 78, 1190–1207. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Dem’yachenko, E.A.; Fedorova, G.A.; Shutalev, A.D. A novel selective synthesis of β-isothiocyanato ketones through a Staudinger/aza-Wittig reaction of β-azido ketones. Monatsh. Chem. 2013, 144, 351–359. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Solovyev, P.A.; Shutalev, A.D. A novel convenient synthesis of 5-acyl-1,2- dihydropyrimidin-2-ones via 4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones. Tetrahedron 2010, 66, 940–946. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Shutalev, A.D. Diastereoselective synthesis of 5-benzylthio- and 5-mercaptohexahydropyrimidin-2-ones. Tetrahedron Lett. 2007, 48, 8420–8423. [Google Scholar] [CrossRef]
- Shutalev, A.D.; Kurochkin, N.N. A new approach to the synthesis of Biginelli compounds. Mendeleev Commun. 2005, 15, 70–72. [Google Scholar] [CrossRef]
- Gribble, G.W.; Nutaitis, C.F. Sodium Borohydride in Carboxylic Acid Media. A Review of the Synthetic Utility of Acyloxyborohydrides. Org. Prep. Proced. Int. 1985, 17, 317–384. [Google Scholar] [CrossRef]
- Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures. J. Org. Chem. 1996, 61, 3849–3862. [Google Scholar] [CrossRef]
- Baxter, E.W.; Reitz, A.B. Reductive Aminations of Carbonyl Compounds with Borohydride and Borane Reducing Agents. Org. React. 2002, 59, 1–714. [Google Scholar]
- Abdel-Magid, A.F.; Mehrman, S.J. A Review on the Use of Sodium Triacetoxyborohydride in the Reductive Amination of Ketones and Aldehydes. Org. Proc. Res. Dev. 2006, 10, 971–1031. [Google Scholar] [CrossRef]
Entry | 3 | X | R | R1 | R2 | R3 | Equiv. of NaBH3CN | Time (h) | Product | Isolated Yield (%) | cis/trans Ratio b |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3a | S | Me | Me | H | Me | 1.00 | 1 | 4a | 93 | – |
2 | 3b | O | Me | Me | H | Me | 1.00 | 1 | 4b | 54 | – |
3 | 3c c | S | Me | H | CH2CH2CH2 | 1.01 | 1 | 4c | 94 | – d | |
4 | 3d | S | Me | Me | CH2CH2CH2 | 1.48 | 3.17 | 4d | 88 | >99:1 | |
5 | 3e | S | CH2CH2CH2 | CH2CH2CH2 | 1.61 | 3.17 | 4e | 92 | >99:1 | ||
6 | 3f | O | CH2CH2CH2 | CH2CH2CH2 | 1.49 | 1 | 4f | 91 | 99:1 | ||
7 | 3g e | S | Me | H | CH2CH2CH2CH2 | 1.00 | 1 | 4g | 84 | – f | |
8 | 3h | S | Me | Me | CH2CH2CH2CH2 | 1.50 | 1 | 4h | 93 | 98:2 | |
9 | 3i | O | Me | Me | CH2CH2CH2CH2 | 1.01 | 1 | 4i | 94 | 88:12 | |
10 | 3j | S | Ph | H | H | Ph | 1.51 | 3 | 4j | 99 | 26:74 |
11 | 3k | O | Ph | H | H | Ph | 1.00 | 1 | 4k | 93 | 18:82 |
Entry | 3 or 4 | X | R | R1 | R2 | R3 | R4 | Reaction conditions b | 7 | Yield (%) c | dr d |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3a | S | Me | Me | H | Me | Me | NaBH4 (6.0), AcOH (61.1), THF, rt, 24 h | 7a | 89 | – |
2 | 3a | S | Me | Me | H | Me | Et | NaBH4 (6.0), EtCOOH (61.9), THF, rt, 24 h | 7b | 90 | – |
3 | 4a | S | Me | Me | H | Me | Et | NaBH3CN (1.5), EtCHO (5.8), AcOH (1.5), MeOH, rt, 2 h | 7b | 90 | – |
4 | 4a | S | Me | Me | H | Me | Pr | NaBH3CN (1.5), PrCHO (6.0), AcOH (1.5), MeOH, rt, 2 h | 7c | 95 | – |
5 | 4a | S | Me | Me | H | Me | Ph | NaBH3CN (3.6), PhCHO (6.1), AcOH (3.0), MeOH, rt, 2 h | 7d | 90 | – |
6 | 3b | O | Me | Me | H | Me | Me | NaBH4 (6.0), AcOH (60.3), THF, rt, 24 h | 7e | 50 | – |
7 | 3b | O | Me | Me | H | Me | Et | NaBH4 (6.0), EtCOOH (60.6), THF, rt, 23.5 h | 7f | 50 | – |
8 | 3c e | S | Me | H | CH2CH2CH2 | Me | NaBH4 (10.1), AcOH (104.1), THF, rt, 24 h | 7g | 31 | – f | |
9 | 4c | S | Me | H | CH2CH2CH2 | Me | NaBH3CN (1.6), MeCHO (6.4), AcOH (1.5), MeOH, rt, 2 h | 7g | 87 | >99:1 | |
10 | 4e | S | CH2CH2CH2 | CH2CH2CH2 | Et | NaBH3CN (1.5), EtCHO (6.1), AcOH (1.5), MeOH, rt, 2 h | 7h | 95 | >99:1 | ||
11 | 4e | S | CH2CH2CH2 | CH2CH2CH2 | Ph | NaBH3CN (3.1), PhCHO (6.1), AcOH (3.1), MeOH, rt, 2 h | 7i | 93 | >99:1 | ||
12 | 4f g | O | CH2CH2CH2 | CH2CH2CH2 | Et | NaBH3CN (1.5), EtCHO (6.2), AcOH (1.5), MeOH, rt, 2 h | 7j | 68 | 99:1 | ||
13 | 3g h | S | Me | H | CH2CH2CH2CH2 | Me | NaBH4 (6.1), AcOH (65.4), THF, rt, 24 h | 7k | 85 | – i | |
14 | 3g h | S | Me | H | CH2CH2CH2CH2 | Et | NaBH4 (6.1), EtCOOH (62.2), THF, rt, 24 h | 7l | 68 | – j | |
15 | 4h k | S | Me | Me | CH2CH2CH2CH2 | Et | NaBH3CN (1.5), EtCHO (6.0), AcOH (1.5), MeOH, rt, 2 h | 7m | 96 | >99:1 | |
16 | 3k | O | Ph | H | H | Ph | Me | NaBH4 (10.1), AcOH (208.4), THF, rt, 24 h | 7n | 94 | 2:98 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fesenko, A.A.; Shutalev, A.D. A General Stereoselective Approach to 1,2,4-Triazepane-3-thiones/ones via Reduction or Reductive Alkylation of 2,4,5,6-Tetrahydro-3H-1,2,4-triazepine-3-thiones/ones. Proceedings 2019, 9, 14. https://doi.org/10.3390/ecsoc-22-05683
Fesenko AA, Shutalev AD. A General Stereoselective Approach to 1,2,4-Triazepane-3-thiones/ones via Reduction or Reductive Alkylation of 2,4,5,6-Tetrahydro-3H-1,2,4-triazepine-3-thiones/ones. Proceedings. 2019; 9(1):14. https://doi.org/10.3390/ecsoc-22-05683
Chicago/Turabian StyleFesenko, Anastasia A., and Anatoly D. Shutalev. 2019. "A General Stereoselective Approach to 1,2,4-Triazepane-3-thiones/ones via Reduction or Reductive Alkylation of 2,4,5,6-Tetrahydro-3H-1,2,4-triazepine-3-thiones/ones" Proceedings 9, no. 1: 14. https://doi.org/10.3390/ecsoc-22-05683
APA StyleFesenko, A. A., & Shutalev, A. D. (2019). A General Stereoselective Approach to 1,2,4-Triazepane-3-thiones/ones via Reduction or Reductive Alkylation of 2,4,5,6-Tetrahydro-3H-1,2,4-triazepine-3-thiones/ones. Proceedings, 9(1), 14. https://doi.org/10.3390/ecsoc-22-05683