Inhibition of Polymer Photodegradation by Incorporation of Coffee Silverskin †
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Polymer Composites
2.3. Accelerated Aging of Composites
2.4. Measurements
3. Results
3.1. Thermal Properties
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recy. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food Bioprocess Technol. 2013, 7, 1322–1332. [Google Scholar] [CrossRef]
- Conde, T.; Mussatto, S.I. Isolation of polyphenols from spent coffee grounds and silverskin by mild hydrothermal pretreatment. Prep. Biochem. Biotechnol. 2015, 46, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, L.; Calani, L.; Bruni, R.; Brighenti, F.; Del Rio, D. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res. Int. 2014, 61, 196–201. [Google Scholar] [CrossRef]
- Kodjie, S.L.; Li, L.; Li, B.; Cai, W.; Li, C.Y.; Keating, M. Morphology and crystallization behavior of HDPE/CNT nanocomposite. J. Macromol. Sci. Phys. 2006, 45, 231–245. [Google Scholar] [CrossRef]
- Andrzejewski, J.; Krawczak, A.; Wesoły, K.; Szostak, M. Rotational molding of biocomposites with addition of buckwheat husk filler. Structure-property correlation assessment for materials based on polyethylene (PE) and poly(lactic acid) PLA. Compos. Part B Eng. 2020, 108410. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Kosmela, P.; Barczewski, M.; Hejna, A. Mechanical, Thermal and Rheological Properties of Polyethylene-Based Composites Filled with Micrometric Aluminum Powder. Materials 2020, 13, 1242. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Hernández, M.L.; Tena-Salcido, C.S.; Sandoval-Arellano, Z.; González-Cantú, M.C.; Mondragón, M.; Rodríguez-González, F.J. The effect of thermoplastic starch on the properties of HDPE/TPS blends during UV-accelerated aging. Polym. Bull. 2011, 67, 903–914. [Google Scholar] [CrossRef]
Sample | Aging Time, h | Tm, °C | Tcr, °C | ΔHm, J/g | Xcr,% | OIT, min |
---|---|---|---|---|---|---|
PE | 0 | 134.1 | 112.8 | 187.4 | 63.8 | 20.0 |
100 | 132.5 | 112.4 | 197.8 | 67.4 | 13.5 | |
200 | 133.2 | 110.6 | 146.6 | 49.9 | 13.5 | |
PE/1ŁK | 0 | 133.2 | 113.1 | 190.5 | 65.5 | 54.8 |
100 | 132.7 | 112.3 | 189.1 | 65.1 | 13.5 | |
200 | 133.8 | 113.5 | 152.1 | 52.3 | 13.5 | |
PE/2ŁK | 0 | 134.1 | 113.0 | 188.9 | 65.7 | 83.9 |
100 | 132.8 | 112.9 | 181.8 | 63.2 | 15.1 | |
200 | 132.7 | 112.8 | 182.1 | 63.3 | 13.5 | |
PE/5ŁK | 0 | 133.3 | 113.3 | 186.5 | 66.9 | 131.9 |
100 | 133.6 | 113.1 | 174.8 | 62.7 | 15.8 | |
200 | 132.0 | 113.8 | 177.9 | 63.8 | 16.5 | |
PE/10ŁK | 0 | 133.0 | 113.4 | 174.5 | 66.0 | 139.5 |
100 | 132.3 | 112.7 | 170.9 | 64.7 | 17.9 | |
200 | 132.4 | 112.9 | 170.7 | 64.6 | 16.7 | |
PE/20ŁK | 0 | 132.6 | 112.5 | 156.4 | 66.6 | 140.4 |
100 | 133.6 | 112.2 | 148.5 | 63.2 | 76.8 | |
200 | 131.6 | 113.6 | 159.2 | 67.8 | 30.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O. Inhibition of Polymer Photodegradation by Incorporation of Coffee Silverskin. Proceedings 2021, 69, 1. https://doi.org/10.3390/CGPM2020-07219
Hejna A, Barczewski M, Kosmela P, Mysiukiewicz O. Inhibition of Polymer Photodegradation by Incorporation of Coffee Silverskin. Proceedings. 2021; 69(1):1. https://doi.org/10.3390/CGPM2020-07219
Chicago/Turabian StyleHejna, Aleksander, Mateusz Barczewski, Paulina Kosmela, and Olga Mysiukiewicz. 2021. "Inhibition of Polymer Photodegradation by Incorporation of Coffee Silverskin" Proceedings 69, no. 1: 1. https://doi.org/10.3390/CGPM2020-07219
APA StyleHejna, A., Barczewski, M., Kosmela, P., & Mysiukiewicz, O. (2021). Inhibition of Polymer Photodegradation by Incorporation of Coffee Silverskin. Proceedings, 69(1), 1. https://doi.org/10.3390/CGPM2020-07219