Exploring the Microbial Community of Traditional Sourdoughs to Select Yeasts and Lactic Acid Bacteria †
Abstract
:1. Introduction
2. Methods
2.1. Collection of Samples
2.2. Yeasts and LAB Isolation
2.3. DNA Extraction and Preliminary Characterization
2.4. Species Assignment
3. Results and Discussion
3.1. Yeasts Molecular Characterization
3.2. Bacteria Molecular Characterization
4. Conclusions
Acknowledgments
References
- De Vuyst, L.; Vrancken, G.; Ravyts, F.; Rimaux, T.; Weckx, S. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 2009, 26, 666–675. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Harth, H.; Van Kerrebroeck, S.; Leroy, F. Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int. J. Food Microbiol. 2016, 239, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Pulvirenti, A.; Rainieri, S.; Boveri, S.; Giudici, P. Optimizing the selection process of yeast starter cultures by preselecting strains dominating spontaneous fermentations. Can. J. Microbiol. 2009, 55, 326–332. [Google Scholar] [CrossRef] [PubMed]
- De Vero, L.; Boniotti, M.B.; Budroni, M.; Buzzini, P.; Cassanelli, S.; Comunian, R.; Gullo, M.; Logrieco, A.F.; Mannazzu, I.; Musumeci, R.; et al. Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms 2019, 7, 685. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.S.; Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene 1987, 57, 267–272. [Google Scholar] [CrossRef]
- Ausubel, F.M.; Brent, R.; Kingston, R.E.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; Struhl, K. Current Protocols in Molecular Biology: Preface, Ringbou ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2003; ISBN 047150338X. [Google Scholar]
- Pulvirenti, A.; Solieri, L.; Gullo, M.; De Vero, L.; Giudici, P. Occurrence and dominance of yeast species in sourdough. Lett. Appl. Microbiol. 2004, 113–117. [Google Scholar] [CrossRef]
- Lattanzi, A.; Minervini, F.; Di Cagno, R.; Diviccaro, A.; Antonielli, L.; Cardinali, G.; Cappelle, S.; De Angelis, M.; Gobbetti, M. The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet leavened baked goods. Int. J. Food Microbiol. 2013, 163, 71–79. [Google Scholar] [CrossRef]
- Kurtzman, C.P. Identification of food and beverage spoilage yeasts from DNA sequence analyses. Int. J. Food Microbiol. 2015, 213, 71–78. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffe, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Plant Syst. Evol. 2012, 298, 3389–3402. [Google Scholar] [CrossRef]
- Gullo, M.; Romano, A.D.; Pulvirenti, A.; Giudici, P. Candida humilis—Dominant species in sourdoughs for the production of durum wheat bran flour bread. Int. J. Food Microbiol. 2003, 80, 55–59. [Google Scholar] [CrossRef]
- Venturi, M.; Guerrini, S.; Vincenzini, M. Stable and non-competitive association of Saccharomyces cerevisiae, Candida milleri and Lactobacillus sanfranciscensis during manufacture of two traditional sourdough baked goods. Food Microbiol. 2012, 31, 107–115. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.M.; Weckx, S. Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Carbonetto, B.; Nidelet, T.; Guezenec, S.; Perez, M.; Segond, D.; Sicard, D. Interactions between Kazachstania humilis yeast species and lactic acid bacteria in Sourdough. Microorganisms 2020, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, A.; Ito, K.; Narushima, N.; Miyamoto, T. Identification of lactic acid bacteria and yeasts, and characterization of food components of sourdoughs used in Japanese bakeries. J. Biosci. Bioeng. 2019, 127, 575–581. [Google Scholar] [CrossRef]
- De Vuyst, L.; Neysens, P. The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Garofalo, C.; Silvestri, G.; Aquilanti, L.; Clementi, F. PCR-DGGE analysis of lactic acid bacteria and yeast dynamics during the production processes of three varieties of Panettone. J. Appl. Microbiol. 2008, 105, 243–254. [Google Scholar] [CrossRef]
- Raimondi, S.; Amaretti, A.; Rossi, M.; Fall, P.A.; Tabanelli, G.; Gardini, F.; Montanari, C. Evolution of microbial community and chemical properties of a sourdough during the production of Colomba, an Italian sweet leavened baked product. LWT-Food Sci. Technol. 2017, 86, 31–39. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Boscaino, F.; Nazzaro, F.; Fratianni, F.; Aponte, M. Lactic acid bacteria biota and aroma profile of italian traditional sourdoughs from the irpinian area in Italy. Front. Microbiol. 2019, 10, 1621. [Google Scholar] [CrossRef]
- Corsetti, A.; Settanni, L.; Van Sinderen, D.; Felis, G.E.; Dellaglio, F.; Gobbetti, M. Lactobacillus rossii sp. nov., isolated from wheat sourdough. Int. J. Syst. Evol. Microbiol. 2005, 55, 35–40. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Gallo, G.; Settanni, L.; Berloco, M.G.; Siragusa, S.; Parente, E. Genotypic and phenotypic diversity of Lactobacillus rossiae strains isolated from sourdough. J. Appl. Microbiol. 2007, 103, 821–835. [Google Scholar] [CrossRef]
- Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. From Microbial Ecology to Innovative Applications in Food Quality Improvements: The Case of Sourdough as a Model Matrix. J. Multidiscip. Sci. J. 2020, 3, 9–19. [Google Scholar] [CrossRef]
Sample | Strain | RFLP-PCR ITS-5.8S HaeIII Restriction Enzyme | (GTG)5-PCR Cluster | D1/D2 Domain of 26S rRNA Gene Sequence Comparison Species, Accession N. (% identity) |
---|---|---|---|---|
LMA2, LMA3 * | 400-230 | A | K. humilis NG_055707(99%) | |
MA | LMA1, LMA4, LMA5, | 400-230 | - | K. humilis NG_055707(98%)/ K. pseudohumilis NG_058281(98%) |
LMA6, LMA7, LMA8 | 400-230 | - | ||
LMA9, LMA10 | 400-230 | B | K. humilis NG_055707(99%) | |
LIA1, LIA9, LIA10 | 400-230 | C | K. humilis NG_055707(99%) | |
IMPA | LIA2, LIA3, LIA4, | 400-230 | D | |
LIA5, LIA7 | 400-230 | D | K. humilis NG_055707(99%) | |
LIA6, LIA8 | 400-230 | E | K. humilis NG_055707(99%) | |
LFA1 | 400-230 | F | K. humilis NG_055707(100%) | |
LFA2, LFA3, LFA4, | 400-230 | G | K. humilis NG_055707(97%) | |
FINA | LFA5 | 400-230 | G | |
LFA6 | 400-230 | H | K. humilis NG_055707(99%) | |
LFA7, LFA8 | 400-230 | A | ||
LFA9, LFA10 | 400-230 | C | ||
LMB1 | 400-230 | - | K. humilis NG_055707(100%) | |
LMB2, LMB3, LMB6, | 320-230-180-150 | I | ||
MB | LMB7, LMB10 | 300-230-180-150 | I | |
LMB4, LMB5 | 400-230 | L | K. humilis NG_055707(100%) | |
LMB8 | 400-230 | M | ||
LMB9 | 320-230-180–150 | N | S. cerevisiae NG_042623 (100%) | |
LIB1, LIB4, LIB7, | 320-230-180-150 | I | S. cerevisiae NG_042623(100%) | |
IMPB | LIB10 | 320-230-180-150 | I | |
LIB2, LIB3, LIB5, | 400-230 | O | K. humilis NG_055707(100%) | |
LIB6, LIB8, LIB9 | 400-230 | O | ||
LFB1, LFB2, LFB3, | 320-230-180-150 | P | S. cerevisiae NG_042623(100%) | |
LFB4, LFB6 | 320-230-180 -150 | P | ||
FINB | LFB5, LFB7, LFB8, | 400-230 | O | |
LFB9 | 320-230-180-150 | O | ||
LFB10 | 320-230-18-150 | Q | S. cerevisiae NG_042623(100%) |
Sample | Strain | (GTG)5-PCR | 16S rRNA Gene |
---|---|---|---|
Cluster | Sequence Comparison | ||
Species, Accession N. (% Identity) | |||
MA | BMA2, BMA8, BMA10 * | A | L. sanfranciscensis X76327 (99%) |
BIA2, BIA3 | B | L. parabuchneri LC383822 (100%) | |
BIA5, BIA8, BIA10 | C | L. rossiae NR_112758 (99%) | |
IMPA | BIA6 | D | L. citreum NR_041727 (99%) |
BIA7 | E | L. mesenteroides NR_074957 (100%) | |
BIA9 | F | ||
FINA | BFA1 | G | L. plantarum CP039121 (100%) |
BFA2 | H | L. citreum NR_041727 (99%) | |
BMB5 | I | L. sanfranciscensis X76327 (99%) | |
MB | BMB7 | L | L. sanfranciscensis X76327 (99%) |
BMB10 | - | S. epidermidis LN681574 (99%) | |
BIB6 | M | S. epidermidis LN681574 (100%) | |
IMPB | BIB7, BIB8 | N | L. rossiae NR_112758 (99%) |
BIB9 | - | ||
BFB1 | M | S. epidermidis LN681574 (99%) | |
FINB | BFB3, BFB8 | O | L. citreum NR_041727 (99%) |
BFB6 | P | L. mesenteroides NR_074957 (100%) | |
BFB7 | - | S. hominis subsp. novobiosepticus MF678884 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosca, G.; Vero, L.D.; Gullo, M.; Licciardello, F.; Quartieri, A.; Pulvirenti, A. Exploring the Microbial Community of Traditional Sourdoughs to Select Yeasts and Lactic Acid Bacteria. Proceedings 2020, 66, 3. https://doi.org/10.3390/proceedings2020066003
Iosca G, Vero LD, Gullo M, Licciardello F, Quartieri A, Pulvirenti A. Exploring the Microbial Community of Traditional Sourdoughs to Select Yeasts and Lactic Acid Bacteria. Proceedings. 2020; 66(1):3. https://doi.org/10.3390/proceedings2020066003
Chicago/Turabian StyleIosca, Giovanna, Luciana De Vero, Maria Gullo, Fabio Licciardello, Andrea Quartieri, and Andrea Pulvirenti. 2020. "Exploring the Microbial Community of Traditional Sourdoughs to Select Yeasts and Lactic Acid Bacteria" Proceedings 66, no. 1: 3. https://doi.org/10.3390/proceedings2020066003
APA StyleIosca, G., Vero, L. D., Gullo, M., Licciardello, F., Quartieri, A., & Pulvirenti, A. (2020). Exploring the Microbial Community of Traditional Sourdoughs to Select Yeasts and Lactic Acid Bacteria. Proceedings, 66(1), 3. https://doi.org/10.3390/proceedings2020066003