Validation of Self-Quantification Xiaomi Band in a Clinical Sleep Unit †
Abstract
:1. Introduction
2. Methods
2.1. Design of the Study
2.2. Data Collection and Analysis
2.2.1. Variables of Interest
2.2.2. Statistical Analysis
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chen, J.H.; Waite, L.; Kurina, L.M.; Thisted, R.A.; McClintock, M.; Lauderdale, D.S. Insomnia symptoms and actigraph-estimated sleep characteristics in a nationally representative sample of older adults. J. Gerontol. 2015, 70, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Rundo, J.V.; Downey, R. Polysomnography. Handb. Clin. Neurol. 2019, 160, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Shelgikar, A.V.; Anderson, P.F.; Stephens, M.R. Sleep Tracking, Wearable Technology, and Opportunities for Research and Clinical Care. Chest 2016, 150, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Kahawage, P.; Jumabhoy, R.; Hamill, K.; de Zambotti, M.; Drummond, S.P. Validity, potential clinical utility, and comparison of consumer and research-grade activity trackers in Insomnia Disorder I: In-lab validation against polysomnography. J. Sleep Res. 2020, 29, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.; Olivan, J. European data format ’plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin. Neurophysiol. 2003, 114, 1755–1761. [Google Scholar] [CrossRef]
- de Zambotti, M.; Rosas, L.; Colrain, I.M.; Baker, F.C. The Sleep of the Ring: Comparison of the ŌURA Sleep Tracker Against Polysomnography. Behav. Sleep Med. 2019, 17, 124–136. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | Dimension |
---|---|---|
Time in Bed (TIB) | Total time the patient is laying down | min |
Sleep Onset Latency (SOL) | Length of time from full wakefulness to sleep | min |
Wake After Sleep Onset (WASO) | Periods of wakefulness after defined sleep onset | min |
Sleep Efficiency (SE) | % | |
Light sleep | min | |
Deep sleep | min | |
REM sleep | - | min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martínez, F.J.; Concheiro-Moscoso, P.; Miranda-Duro, M.D.C.; Boedo, F.D.; Muiño, F.J.M.; Groba, B. Validation of Self-Quantification Xiaomi Band in a Clinical Sleep Unit. Proceedings 2020, 54, 29. https://doi.org/10.3390/proceedings2020054029
Martínez-Martínez FJ, Concheiro-Moscoso P, Miranda-Duro MDC, Boedo FD, Muiño FJM, Groba B. Validation of Self-Quantification Xiaomi Band in a Clinical Sleep Unit. Proceedings. 2020; 54(1):29. https://doi.org/10.3390/proceedings2020054029
Chicago/Turabian StyleMartínez-Martínez, Francisco José, Patricia Concheiro-Moscoso, María Del Carmen Miranda-Duro, Francisco Docampo Boedo, Francisco Javier Mejuto Muiño, and Betania Groba. 2020. "Validation of Self-Quantification Xiaomi Band in a Clinical Sleep Unit" Proceedings 54, no. 1: 29. https://doi.org/10.3390/proceedings2020054029
APA StyleMartínez-Martínez, F. J., Concheiro-Moscoso, P., Miranda-Duro, M. D. C., Boedo, F. D., Muiño, F. J. M., & Groba, B. (2020). Validation of Self-Quantification Xiaomi Band in a Clinical Sleep Unit. Proceedings, 54(1), 29. https://doi.org/10.3390/proceedings2020054029