On the Effectiveness of Convolutional Autoencoders on Image-Based Personalized Recommender Systems †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Díez, J.; Pérez-Núñez, P.; Luaces, O.; Remeseiro, B.; Bahamonde, A. Towards explainable personalized recommendations by learning from users’ photos. Inf. Sci. 2020, 520, 416–430. [Google Scholar] [CrossRef]
- He, R.; McAuley, J. VBPR: Visual bayesian personalized ranking from implicit feedback. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 144–150. [Google Scholar]
- Zhang, H.; Ji, P.; Wang, J.; Chen, X. A novel decision support model for satisfactory restaurants utilizing social information: A case study of TripAdvisor.com. Tour. Manag. 2017, 59, 281–297. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Wang, J. Personalized restaurant recommendation method combining group correlations and customer preferences. Inf. Sci. 2018, 454, 128–143. [Google Scholar] [CrossRef]
- Chollet, F. Building Autoencoders in Keras. The Keras Blog, 2016. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016; pp. 770–778. [Google Scholar]
Sensitivity | Specificity | B-Score | |||||||
---|---|---|---|---|---|---|---|---|---|
CAE | CNN | CNN_FT | CAE | CNN | CNN_FT | CAE | CNN | CNN_FT | |
NYC | 0.7454 | 0.7261 | 0.7933 | 0.7594 | 0.7071 | 0.6724 | 0.7523 | 0.7165 | 0.7279 |
BCN | 0.6175 | 0.8546 | 0.6738 | 0.8006 | 0.4480 | 0.6176 | 0.6972 | 0.5878 | 0.6445 |
SGC | 0.7629 | 0.8453 | 0.7318 | 0.7905 | 0.6047 | 0.8181 | 0.7765 | 0.7050 | 0.7725 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-Mallo, E.; Remeseiro, B.; Bolón-Canedo, V.; Alonso-Betanzos, A. On the Effectiveness of Convolutional Autoencoders on Image-Based Personalized Recommender Systems. Proceedings 2020, 54, 11. https://doi.org/10.3390/proceedings2020054011
Blanco-Mallo E, Remeseiro B, Bolón-Canedo V, Alonso-Betanzos A. On the Effectiveness of Convolutional Autoencoders on Image-Based Personalized Recommender Systems. Proceedings. 2020; 54(1):11. https://doi.org/10.3390/proceedings2020054011
Chicago/Turabian StyleBlanco-Mallo, Eva, Beatriz Remeseiro, Verónica Bolón-Canedo, and Amparo Alonso-Betanzos. 2020. "On the Effectiveness of Convolutional Autoencoders on Image-Based Personalized Recommender Systems" Proceedings 54, no. 1: 11. https://doi.org/10.3390/proceedings2020054011
APA StyleBlanco-Mallo, E., Remeseiro, B., Bolón-Canedo, V., & Alonso-Betanzos, A. (2020). On the Effectiveness of Convolutional Autoencoders on Image-Based Personalized Recommender Systems. Proceedings, 54(1), 11. https://doi.org/10.3390/proceedings2020054011