Technological and Sensory Properties of Baby Purees Formulated with Andean Grains and Dried with Different Methods †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.1.1. Mashed Potato
2.1.2. Non-Germinated and Germinated Grain Flours
2.2. Fresh Puree and Dry Powders
2.2.1. Fresh Puree (FP)
2.2.2. Freeze-Drying (LD)
2.2.3. Drying by Forced Air Circulation (CD)
2.2.4. Extrusion (ED)
2.2.5. Dry Powders (DPs)
2.3. Proximal Composition
2.4. Particle Morphology
2.5. Rehydration Properties
2.5.1. Solubility and Water Absorption Capacity
2.5.2. Water Adsorption
2.6. Physical Characteristics
2.6.1. Color
2.6.2. Texture Profile Analysis (TPA)
2.7. Sensory Evaluation and Acceptability
2.8. Statistics Analysis
3. Results
3.1. Proximal Composition
3.2. Particle Morphology
3.3. Rehydration Properties
3.4. Physical Characteristics
3.5. Sensory Evaluation and Acceptability
4. Discussion
5. Conclusions
Acknowledgments
References
- OMS; Organización Mundial de la Salud. La Alimentación del Lactante y del niño Pequeño; OPS-OMS: Washington, DC, USA, 2010; ISBN 978-92-75-33094-4. [Google Scholar]
- Troszyήska, A.; Szymkiewicz, A.; Wołejszo, A. The effects of germination on the sensory quality and immunoreactive properties of pea (Pisum Sativum L.) and soybean (Glycine max). J. Food Qual. 2007, 30, 1083–1100. [Google Scholar] [CrossRef]
- Wang, L.; Duan, W.; Zhou, S.; Qian, H.; Zhang, H.; Qi, X. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chem. 2016, 204, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Yi, J.; Bi, J.; Zhao, Y.; Peng, J.; Hou, C.; Lyu, J.; Zhou, M. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips. J. Food Qual. 2018, 4510242. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. Methods of Analysis (AOAC). Available online: http://www.aoac.org/ (accessed on 1 March 2019).
- Wani, I.A.; Sogi, D.S.; Gill, B.S. Physicochemical and functional properties of flours from three Black gram (Phaseolus mungo L.) cultivars. Int. J. Food Sci. Technol. 2013, 48, 771–777. [Google Scholar] [CrossRef]
- Tonon, R.; Freitas, S.S.; Hubinger, M.D. Spray drying of açai (Euterpe oleraceaemart.) juice: Effect of inlet air temperature and type of carrier agent. J. Food Process. Preserv. 2011, 35, 691–700. [Google Scholar] [CrossRef]
- Ahmed, M.; Sorifa, A.M.; Eun, J.B. Effect of pretreatments and drying temperatures on sweet potato flour. Int. J. Food Sci. Technol. 2010, 45, 726–732. [Google Scholar] [CrossRef]
- Valentina, V.; Pratiwi, A.R.; Hsiao, P.Y.; Tseng, H.T.; Hsieh, J.F.; Chen, C.C. Sensorial Characterization of Foods Before and After Freeze-drying. Austin Food Sci. 2016, 1, 1027–1031. [Google Scholar]
- Jafari, M.; Koocheki, A.; Milani, E. Physicochemical and sensory properties of extruded sorghum-wheat composite bread. J. Food Meas. Charact. 2018, 12, 370–377. [Google Scholar] [CrossRef]
Sample | Moisture | Ash | Protein | Fat | Carbohydrates |
---|---|---|---|---|---|
MP | 9.64 ± 0.28 b | 3.84 ± 0.20 a | 10.71 ± 0.29 a | 6.77 ± 0.17 a | 78.68 |
LD | 5.89 ± 0.19 c | 3.82 ± 0.12 a | 10.47 ± 0.36 a | 5.42 ± 0.21 b | 80.29 |
CD | 11.04 ± 0.65 a | 3.59 ± 0.12 a | 10.21 ± 0.10 a | 3.72 ± 0.16 c | 82.47 |
ED | 8.93 ± 0.15 b | 3.44 ± 0.09 a | 10.26 ± 0.35 a | 2.66 ± 0.15 d | 83.65 |
LD | CD | ED | ||
---|---|---|---|---|
Solubility (g/100 g) | 52.59 ± 0.33 a | 48.53 ± 0.29 b | 27.90 ± 0.81 c | |
WAC (g/g) | 0.98 ± 0.27 c | 1.51 ± 0.11 b | 2.24 ± 0.26 a | |
BET model | Xm | 0.066 a | 0.062 a | 0.051 b |
C | 46.533 a | 29.345 b | 19.452 c | |
R2 | 0.997 | 0.993 | 0.995 | |
%E | 1.089 | 2.798 | 2.456 |
FP | LD | CD | ED | ||
---|---|---|---|---|---|
Color | L* | 64.1 ± 0.4 b | 67.4 ± 0.5 a | 62.6 ± 0.4 c | 59.1 ± 0.3 d |
a* | 14.2 ± 0.4 c | 13.1 ± 0.7 d | 15.7 ± 0.1 b | 19.3 ± 0.9 a | |
b* | 57.2 ± 0.4 c | 54.8 ± 0.4 d | 61.4 ± 0.9 b | 64.1 ± 0.4 a | |
Texture profile | Hardness | 11.5 ± 0.4 b | 3.4 ± 0.1 c | 10.7 ± 0.5 b | 34.2 ± 0.7 ª |
Adhesiveness | 70.4 ± 2.6 c | 16.8 ± 1.0 d | 87.4 ± 4.7 b | 212.2 ± 2.7 a | |
Cohesiveness | 0.63 ± 0.01 d | 0.69 ± 0.01 cd | 0.80 ± 0.01 a | 0.67 ± 0.03 b | |
Gumminess | 7.9 ± 0.3 b | 2.37 ± 0.08 c | 8.5 ± 0.5 b | 22.8 ± 0.4 a | |
Chewiness | 6.9 ± 0.8 c | 2.2 ± 0.4 d | 8.1 ± 0.7 b | 21.3 ± 0.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, M.D.; Lobo, M.O.; Sammán, N.C. Technological and Sensory Properties of Baby Purees Formulated with Andean Grains and Dried with Different Methods. Proceedings 2020, 53, 13. https://doi.org/10.3390/proceedings2020053013
Jiménez MD, Lobo MO, Sammán NC. Technological and Sensory Properties of Baby Purees Formulated with Andean Grains and Dried with Different Methods. Proceedings. 2020; 53(1):13. https://doi.org/10.3390/proceedings2020053013
Chicago/Turabian StyleJiménez, María Dolores, Manuel Oscar Lobo, and Norma Cristina Sammán. 2020. "Technological and Sensory Properties of Baby Purees Formulated with Andean Grains and Dried with Different Methods" Proceedings 53, no. 1: 13. https://doi.org/10.3390/proceedings2020053013
APA StyleJiménez, M. D., Lobo, M. O., & Sammán, N. C. (2020). Technological and Sensory Properties of Baby Purees Formulated with Andean Grains and Dried with Different Methods. Proceedings, 53(1), 13. https://doi.org/10.3390/proceedings2020053013