Numerical CFD Investigation of Shortboard Surfing: Fin Design vs. Cutback Turn Performance †
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFD Research
2.2. Description of Fin Types
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Warshaw, M. The History of Surfing; Chronicle Books: San Francisco, CA, USA, 2010. [Google Scholar]
- Brandner, P.A.; Walker, G.J. Hydrodynamic Performance of a Surfboard Fin. In Proceedings of the 15th Australasian Fluid Mechanics Conference, The University of, Sydney, Sydney, Australia, 13–17 December 2004; pp. 75–82. [Google Scholar]
- Sakellariou, K.; Rana, Z.A.; Jenkins, K.W. Optimization of the Surfboard Fin Shape using Computational Fluid Dynamics and Genetic Algorithms. Proc. Inst. Mech. Eng. Part P: J. Sports Eng. Technol. 2017, 231, 344–354. [Google Scholar]
- Oggiano, L. Numerical Comparison between a Modern Surfboard and an Alaia Board using Computational Fluid Dynamics (CFD). In Proceedings of the 5th International Congress on Sport Sciences Research and Technology Support (icSPORTS 2017), Madeira, Portugal, 30–31 October 2017; pp. 75–82. [Google Scholar]
- Oggiano, L.; Pierella, F. CFD for surfboards: Comparison between three different designs in static and maneuvering conditions. In Proceedings of the 12th Conference of the International Sports Engineering Association, Brisbane, Queensland, Australia, 26–28 March 2018. [Google Scholar]
- Lavery, N.; Foster, G.; Carswell, D.; Brown, S. CFD modeling of the effect of fillets on fin drag. Reef. J. 2009, 1, 93–111. [Google Scholar]
- Beggs-French, R. Surfboard Hydrodynamics; Aeronautical Engineering: Project, Thesis & Practical Work Experience A/B; Univ. of New South Wales at the Australian Defence Force Academy: Sydney, Australia, 2009. [Google Scholar]
- MacNeill, M.S. Bio-Inspired Optimal Fin Shape and Angle for Maximum Surfboard Stability. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2015. [Google Scholar]
- Falk, S.; Kniesburges, R.; Janka, R.; Grosso, R.; Becker, S.; Semmler, M.; Dollinger, M. Computational hydrodynamics of a typical 3-fin surfboard setup. J. Fluids Struct. 2019, 90, 297–314. [Google Scholar] [CrossRef]
- Shormann, D.E.; In het Panhuis, M. Performance evaluation of a humpback whale-inspired hydrofoil design applied to surfboard fins. In Proceedings of the OCEANS 2019 MTS/IEEE Seattle, Seattle, WA, USA, 27–31 October 2019. [Google Scholar]
- Shormann, D.E.; In het Panhuis, M.; Oggiano, L. Field and Numerical CFD Investigation of the Effects of Turning Rates on Shortboard Fin Design and Performance. In Proceedings of the 13th conference of the International Sports Engineering Association, Tokyo, Japan, 22–25 June 2020. [Google Scholar]
- Shormann, D.E. U.S. Patent Application for Biomimetic Airfoil Bodies and Methods of Designing and Making. Same. Patent US 2018/0057141 A1, 29 August 2017. [Google Scholar]
- Fish, F.E.; Battle, J.M. Hydrodynamic design of the humpback whale flipper. J. Morphol. 1995, 225, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Fish, F.E.; Weber, P.W.; Murray, M.M.; Howle, L.E. Marine Applications of the Biomimetic Humpback Whale Flipper. Mar. Technol. Soc. J. 2011, 45, 198–207. [Google Scholar] [CrossRef]
- Hansen, K.L. Effect of Leading Edge Tubercles on Airfoil Performance. Ph.D. Thesis, The University of Adelaide, School of Mechanical Engineering, Adelaide, Australia, 2012. [Google Scholar]
- Miklosovic, D.S.; Murray, M.M.; Howle, L.E.; Fish, F.E. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys. Fluids 2004, 16, 39–42. [Google Scholar] [CrossRef]
- Johari, H. Applications of Hydrofoils with Leading Edge Protuberances; Final Technical Report for the Office of Naval Research contract N00014-08-1-1043; Defense Technical Information Center: Fort Belvoir, VA, USA, 2012. [Google Scholar]
- Van Nierop, E.A.; Alben, S.; Brenner, M.P. How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model. Phys. Rev. Lett. 2008, 100, 054502. [Google Scholar] [CrossRef] [PubMed]
- 3D Fins Jamie O’Brien Channel Tip (Futures Compatible). Available online: https://finatic.com/fin/25473-3d-fins-jamie-o-brien-channel-tip-futures-compatible-with-reviews (accessed on 16 October 2019).
- Assessment of Wingtip Modifications to Increase the Fuel Efficiency of Air Force Aircraft (2007). Chapter 2: Wingtip Modifications. Available online: https://www.nap.edu/read/11839/chapter/4 (accessed on 16 October 2019).
- Aftab, S.M.A.; Razak, N.A.; Mohd Rafie, A.S.; Ahmad, K.A. Mimicking the humpback whale: An aerodynamic perspective. Prog. Aerosp. Sci. 2016, 84, 48–69. [Google Scholar] [CrossRef]
- Tong, F.; Qiao, W.; Chen, W.; Cheng, H.; Wei, R.; Wang, X. Numerical analysis of broadband noise reduction with wavy leading edge. Chin. J. Aerosp. 2018, 31, 1489–1505. [Google Scholar] [CrossRef]
WCT Cutback | Center Fin Resultant (N) | All Fins Resultant (N) | ||||||
---|---|---|---|---|---|---|---|---|
Control | RW | CR | p-Value | Control | RW | CR | p-Value | |
Before | 3.36 ± 0.01 | 2.95 ± 0.01 | 3.34 ± 0.02 | <0.001 | 12.3 ± 0.09 | 12.5 ± 0.05 | 9.6 ± 0.05 | <0.001 |
During | 258 ± 13 | 251 ± 12 | 278 ± 14 | 0.013 | 690 ± 36 | 671 ± 34 | 737 ± 39 | 0.033 |
After (resultant, N) | 303 ± 7.0 | 320 ± 6.0 | 335 ± 9.3 | <0.001 | 733 ± 7.6 | 755 ± 6.8 | 798 ± 9.3 | <0.001 |
After (direction, °) | −23 ± 2 | −24 ±2 | −23 ± 2 | 0.825 | −22 ± 2 | −24 ± 2 | −23 ± 2 | 0.623 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shormann, D.; Oggiano, L.; Panhuis, M.i.h. Numerical CFD Investigation of Shortboard Surfing: Fin Design vs. Cutback Turn Performance. Proceedings 2020, 49, 132. https://doi.org/10.3390/proceedings2020049132
Shormann D, Oggiano L, Panhuis Mih. Numerical CFD Investigation of Shortboard Surfing: Fin Design vs. Cutback Turn Performance. Proceedings. 2020; 49(1):132. https://doi.org/10.3390/proceedings2020049132
Chicago/Turabian StyleShormann, David, Luca Oggiano, and Marc in het Panhuis. 2020. "Numerical CFD Investigation of Shortboard Surfing: Fin Design vs. Cutback Turn Performance" Proceedings 49, no. 1: 132. https://doi.org/10.3390/proceedings2020049132
APA StyleShormann, D., Oggiano, L., & Panhuis, M. i. h. (2020). Numerical CFD Investigation of Shortboard Surfing: Fin Design vs. Cutback Turn Performance. Proceedings, 49(1), 132. https://doi.org/10.3390/proceedings2020049132