Bicycle Disc Brake Thermal Performance: Combining Dynamometer Tests, Bicycle Experiments, and Modeling †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Dynamometer
2.2. Bicycle Testing
2.3. Numerical Model
3. Results
3.1. Friction Data
3.2. Bicycle Testing and Numerical Modeling Thermal Results
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Feier, I.; Redfield, R. Thermal/Mechanical Measurement and Modeling of Bicycle Disc Brakes. Proceedings 2018, 2, 215. [Google Scholar] [CrossRef]
- Martin, J.C.; Milliken, D.L.; Cobb, J.E.; McFadden, K.L.; Coggan, A.R. Validation of a Mathematical Model for Road Cycling Power. J. Appl. Biomech. 1998, 14, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, W.M.; Rogier, S.; Reiser, R.F. Evaluation of aerodynamic and rolling resistances in mountain-bike field conditions. J. Sports Sci. 2013, 31, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Di Prampero, P.E. Cycling on Earth, in space, on the Moon. Eur. J. Appl. Physiol. 2000, 82, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Keong, L.; Teoh, C. Topology Analysis of Bicycle Rim Brake Pad to Improve Braking Performance. MATEC Web Conf. 2018, 217. [Google Scholar] [CrossRef]
Pad Type | a1 | a2 | a3 | a4 | a5 | w1 | a6 | a7 | R2 | RMSE |
---|---|---|---|---|---|---|---|---|---|---|
Metallic | −4069 | 0.4668 | 3605 | 1659 | 0.02475 | 0.001065 | 0.000 | 406 | 0.956 | 12.7 |
Organic | −52.2 | 0.4532 | −6.786 | 12.23 | 0.09995 | 0.02047 | 0.000 | 408 | 0.951 | 10.6 |
Power Organic | −63.85 | 0.4561 | 11.38 | −24.74 | 0.09115 | 0.01251 | −2.261 (×10−7) | 410 | 0.995 | 3.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feier, I.; Way, J.; Redfield, R. Bicycle Disc Brake Thermal Performance: Combining Dynamometer Tests, Bicycle Experiments, and Modeling. Proceedings 2020, 49, 100. https://doi.org/10.3390/proceedings2020049100
Feier I, Way J, Redfield R. Bicycle Disc Brake Thermal Performance: Combining Dynamometer Tests, Bicycle Experiments, and Modeling. Proceedings. 2020; 49(1):100. https://doi.org/10.3390/proceedings2020049100
Chicago/Turabian StyleFeier, Ioan, Joseph Way, and Rob Redfield. 2020. "Bicycle Disc Brake Thermal Performance: Combining Dynamometer Tests, Bicycle Experiments, and Modeling" Proceedings 49, no. 1: 100. https://doi.org/10.3390/proceedings2020049100
APA StyleFeier, I., Way, J., & Redfield, R. (2020). Bicycle Disc Brake Thermal Performance: Combining Dynamometer Tests, Bicycle Experiments, and Modeling. Proceedings, 49(1), 100. https://doi.org/10.3390/proceedings2020049100