PLS Structure-Insecticidal Activity Relationships of Nitromethylene, Pyrrole- and Dihydropyrrole-Fused Neonicotinoids †
Abstract
:1. Introduction
2. Methods
2.1. Definition of Target Property and Molecular Parameters
2.2. Partial Least Squares (PLS) Method
2.3. Model Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Casida, J.E.; Durkin, K.A. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E.; Quistad, G.B. Golden age of insecticide research: Past, present or future? Annu. Rev. Entomol. 1998, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, C.D.S. The Pesticide Manual: A World Compendium, 15th ed.; British Crop Production Council: Hampshire, UK, 2009. [Google Scholar]
- Casida, J.E.; Quistad, G.B. Why insecticides are more toxic to insects than people: The unique toxicology of insects. J. Pestic. Sci. 2004, 29, 81–86. [Google Scholar] [CrossRef]
- Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R. Applied aspects of neonicotinoid uses in crop protection. Pest. Manag. Sci. 2008, 64, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhang, W.; Zhao, J.; Liang, D.; Yang, X.; Jin, S. A novel halogen bond and a better-known hydrogen bond cooperation of neonicotinoid and insect nicotinic acetylcholine receptor recognition. J. Mol. Model. 2012, 18, 3867–3875. [Google Scholar] [CrossRef]
- Nauen, R.; Denholm, I. Resistance of Insect Pests to Neonicotinoid Insecticides: Current Status and Future Prospects. Arch. Insect Biochem. 2005, 58, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Béguin, M.; Requier, F.; Rollin, O.; Odoux, J.F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lozier, J.D.; Strange, J.P.; Koch, J.B.; Cordes, N.; Solter, L.F.; Griswold, T.L. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xia, S.; Zou, M.; Shao, X. Bridged heterocyclic neonicotinoid analogues: Design, synthesis, and insecticidal activity. Res. Chem. Intermed. 2015, 41, 5293–5300. [Google Scholar] [CrossRef]
- Kagabu, S.; Nishimura, K.; Naruse, Y.; Ohno, I. Insecticidal and neuroblocking potencies of variants of the thiazolidine moiety of thiacloprid and quantitative relationship study for the key neonicotinoid pharmacophore. J. Pestic. Sci. 2008, 33, 58–66. [Google Scholar] [CrossRef]
- Funar-Timofei, S.; Bora, A. Insecticidal Activity Evaluation of Phenylazo and Dihydropyrrole-Fused Neonicotinoids Against Cowpea Aphids Using the MLR Approach. Proceedings 2019, 9, 18. [Google Scholar] [CrossRef]
- Ye, Z.; Xia, S.; Shao, X.; Cheng, J.; Xu, X.; Xu, Z.; Li, Z.; Qian, X. Design, synthesis, crystal structure analysis, and insecticidal evaluation of Phenylazoneonicotinoids. J. Agric. Food Chem. 2011, 59, 10615–10623. [Google Scholar] [CrossRef]
- Ye, Z.; Shi, L.; Shao, X.; Xu, X.; Xu, Z.; Li, Z. Pyrrole- and dihydropyrrole-fused Neonicotinoids: Design, synthesis, and insecticidal evaluation. J. Agric. Food Chem. 2013, 61, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Bora, A.; Funar-Timofei, S. PLS Evaluation of the Insecticidal Activity of Phenylazo, Pyrrole- and Dihydropyrrole-Fused Neonicotinoids. J. Toyo Univ. Nat. Sci. 2019, 63, 101–112. [Google Scholar]
- Lu, S.; Shao, X.; Li, Z.; Xu, Z.; Zhao, S.; Wu, Y.; Xu, X. Design, Synthesis, and Particular Biological Behaviors of Chain-Opening Nitromethylene Neonicotinoids with Cis Configuration. J. Agric. Food Chem. 2012, 60, 322–330. [Google Scholar] [CrossRef]
- Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef]
- Hawkins, P.C.D.; Nicholls, A. Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. Chem. Inf. Model. 2012, 52, 2919–2936. [Google Scholar] [CrossRef]
- Wold, H. Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; Wiley: New York, NY, USA, 1985; Volume 6, p. 581. [Google Scholar]
- Roy, P.P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules 2009, 14, 1660–1701. [Google Scholar]
- Shi, L.M.; Fang, H.; Tong, W.; Wu, J.; Perkins, R.; Blair, R.M.; Branham, W.S.; Dial, S.L.; Moland, C.L.; Sheehan, D.M. QSAR models using a large diverse set of estrogens. J. Chem. Inf. Model. 2001, 41, 186–195. [Google Scholar] [CrossRef]
- Schüürmann, G.; Ebert, R.U.; Chen, J.; Wang, B.; Kühne, R. External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs. training set activity mean. J. Chem. Inf. Model. 2008, 48, 2140–2145. [Google Scholar] [CrossRef]
- Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 2009, 49, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models: How to Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient. J. Chem. Inf. Model. 2011, 51, 2320–2335. [Google Scholar] [CrossRef] [PubMed]
- Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J. Chem. Inf. Model. 2012, 52, 2044–2058. [Google Scholar] [CrossRef]
- Roy, K.; Mitra, I. On the Use of the Metric r2m as an Effective Tool for Validation of QSAR Models in Computational Drug Design and Predictive Toxicology. Mini-Rev. Med. Chem. 2012, 12, 491–504. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Multi and Megavariate Data Analysis: Principles and Applications; Umetrics AB: Umea, Sweden, 2001; pp. 92–97, 489–491. [Google Scholar]
- Goodarzi, M.; Deshpande, S.; Murugesan, V.; Katti, S.B.; Prabhakar, Y.S. Is Feature Selection Essential for ANN Modeling? QSAR Comb. Sci. 2009, 28, 1487–1499. [Google Scholar] [CrossRef]
No | Structure | pLC50exp | pLC50pred | No | Structure | pLC50exp | pLC50pred |
---|---|---|---|---|---|---|---|
1 | 5.21 | 5.08 | 13 | 3.97 | 3.94 | ||
2 | 5.70 | 5.34 | 14 | 3.79 | 3.93 | ||
3 * | 5.80 | 5.42 | 15 | 4.25 | 4.40 | ||
4 | 5.71 | 5.35 | 16 | 4.07 | 3.86 | ||
5 | 5.11 | 5.33 | 17* | 3.91 | 4.02 | ||
6 | 3.85 | 3.90 | 18 | 3.98 | 4.05 | ||
7 | 4.55 | 4.83 | 19 | 4.41 | 4.51 | ||
8 * | 4.52 | 4.85 | 20 * | 3.82 | 4.10 | ||
9 | 4.41 | 4.77 | 21 | 3.86 | 4.07 | ||
10 | 4.35 | 3.99 | 22 | 4.04 | 4.12 | ||
11 | 3.96 | 4.00 | 23 * | 3.58 | 4.09 | ||
12 * | 4.16 | 3.98 | 24 | 3.72 | 3.46 | ||
25 | 4.46 | 4.47 |
No | Variable ID * | CoefCS [3] | VIP [3] |
---|---|---|---|
1 | B03[O-O] | 0.157 | 1.065 |
2 | B05[O-O] | 0.157 | 1.065 |
3 | C-012 | 0.157 | 1.065 |
4 | F03[O-O] | 0.157 | 1.065 |
5 | F05[O-O] | 0.157 | 1.065 |
6 | Mor15m | 0.256 | 1.038 |
7 | Xindex | 0.193 | 0.914 |
8 | B09[C-O] | 0.367 | 0.902 |
9 | Vindex | 0.187 | 0.902 |
10 | X1A | 0.218 | 0.886 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borota, A.; Crisan, L.; Bora, A.; Funar-Timofei, S. PLS Structure-Insecticidal Activity Relationships of Nitromethylene, Pyrrole- and Dihydropyrrole-Fused Neonicotinoids. Proceedings 2019, 41, 41. https://doi.org/10.3390/ecsoc-23-06593
Borota A, Crisan L, Bora A, Funar-Timofei S. PLS Structure-Insecticidal Activity Relationships of Nitromethylene, Pyrrole- and Dihydropyrrole-Fused Neonicotinoids. Proceedings. 2019; 41(1):41. https://doi.org/10.3390/ecsoc-23-06593
Chicago/Turabian StyleBorota, Ana, Luminita Crisan, Alina Bora, and Simona Funar-Timofei. 2019. "PLS Structure-Insecticidal Activity Relationships of Nitromethylene, Pyrrole- and Dihydropyrrole-Fused Neonicotinoids" Proceedings 41, no. 1: 41. https://doi.org/10.3390/ecsoc-23-06593
APA StyleBorota, A., Crisan, L., Bora, A., & Funar-Timofei, S. (2019). PLS Structure-Insecticidal Activity Relationships of Nitromethylene, Pyrrole- and Dihydropyrrole-Fused Neonicotinoids. Proceedings, 41(1), 41. https://doi.org/10.3390/ecsoc-23-06593