Entropic Dynamics for Learning in Neural Networks and the Renormalization Group †
Abstract
:1. Introduction
2. Maxent Distributions and Bayesian Learning
3. Deep Multilayer Perceptron
3.1. Generalized RG Differential Equation of a Neural Network in the Continuous Depth Limit
References
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 19 November 2019).
- Wilson, K.G.; Kogut, J. The renormalization group and the ϵ expansion. Phys. Rep. 1974, 12, 75–199. [Google Scholar] [CrossRef]
- Bény, C. Deep Learning and the Renormalization Group. Available online: https://arxiv.org/abs/1301.3124 (accessed on 19 November 2019).
- Mehta, P.; Schwab, D.J. An exact mapping between the Variational Renormalization Group and Deep Learning. arXiv 2014, arXiv:1410.3831. [Google Scholar]
- Koch-Janusz, M.; Ringel, Z. Mutual information, neural networks and the renormalization group. Nat. Phys. 2018, 14, 578–582. [Google Scholar] [CrossRef]
- Li, S.H.; Wang, L. Neural Network Renormalization Group. Phys. Rev. Lett. 2018, 121, 260601. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.W.; Tegmark, M.; Rolnick, D. Why Does Deep and Cheap Learning Work So Well? J. Stat. Phys. 2017, 168, 1223–1247. [Google Scholar] [CrossRef]
- Kinouchi, O.; Caticha, N. Optimal generalization in perceptrons. J. Phys. A 1992, 25, 6243. [Google Scholar] [CrossRef]
- Biehl, M.; Riegler, P. On-Line Learning with a Preceptron. Europhys. Lett. 1994, 28, 525. [Google Scholar] [CrossRef]
- Kinouchi, O.; Caticha, N. Lower Bounds for Generalization with Drifting Rules. J. Phys. A 1993, 26, 6161. [Google Scholar] [CrossRef]
- Copelli, M.; Caticha, N. On-line learning in the Committee Machine. J. Phys. A 1995, 28, 1615. [Google Scholar] [CrossRef]
- Vicente, R.; Caticha, N. Functional optimization of online algorithms in multilayer neural networks. J. Phys. A Gen. Phys. 1997, 30. [Google Scholar] [CrossRef]
- Caticha, N.; de Oliveira, E. Gradient descent learning in and out of equilibrium. Phys. Rev. E 2001, 63, 061905. [Google Scholar] [CrossRef]
- Opper, M. A Bayesian Approach to Online Learning in On-line Learning in Neural Networks; Saad, D., Ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Solla, S.A.; Winther, O. Optimal online learning: A Bayesian approach. Comput. Phys. Commun. 1999, 121–122, 94–97. [Google Scholar] [CrossRef]
- Caticha, N.; Vicente, R. Agent-based Social Psychology: From Neurocognitive Processes to Social Data. Adv. Complex Syst. 2011, 14, 711–731. [Google Scholar] [CrossRef]
- Vicente, R.; Susemihl, A.; Jerico, J.; Caticha, N. Moral foundations in an interacting neural networks society: A statistical mechanics analysis. Phys. A Stat. Mech. Appl. 2014, 400, 124–138. [Google Scholar] [CrossRef]
- Caticha, N.; Cesar, J.; Vicente, R. For whom will the Bayesian agents vote? Front. Phys. 2015, 3. [Google Scholar] [CrossRef]
- Caticha, N.; Alves, F. Trust, law and ideology in a NN agent model of the US Appellate Courts. In ESANN 2019 Proceedings, Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2019; pp. 511–5162019. ISBN 978-287-587-065-0. Available online: https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-72.pdf (accessed on 19 November 2019).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caticha, N. Entropic Dynamics for Learning in Neural Networks and the Renormalization Group. Proceedings 2019, 33, 10. https://doi.org/10.3390/proceedings2019033010
Caticha N. Entropic Dynamics for Learning in Neural Networks and the Renormalization Group. Proceedings. 2019; 33(1):10. https://doi.org/10.3390/proceedings2019033010
Chicago/Turabian StyleCaticha, Nestor. 2019. "Entropic Dynamics for Learning in Neural Networks and the Renormalization Group" Proceedings 33, no. 1: 10. https://doi.org/10.3390/proceedings2019033010
APA StyleCaticha, N. (2019). Entropic Dynamics for Learning in Neural Networks and the Renormalization Group. Proceedings, 33(1), 10. https://doi.org/10.3390/proceedings2019033010