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Abstract: We study the dynamics of information processing in the continuous depth limit of deep
feed-forward Neural Networks (NN) and find that it can be described in language similar to the
Renormalization Group (RG). The association of concepts to patterns by NN is analogous to the
identification of the few variables that characterize the thermodynamic state obtained by the RG
from microstates. We encode the information about the weights of a NN in a Maxent family of
distributions. The location hyper-parameters represent the weights estimates. Bayesian learning
of new examples determine new constraints on the generators of the family, yielding a new pdf
and in the ensuing entropic dynamics of learning, hyper-parameters change along the gradient
of the evidence. For a feed-forward architecture the evidence can be written recursively from the
evidence up to the previous layer convoluted with an aggregation kernel. The continuum limit leads
to a diffusion-like PDE analogous to Wilson’s RG but with an aggregation kernel that depends on
the the weights of the NN, different from those that integrate out ultraviolet degrees of freedom.
Approximations to the evidence can be obtained from solutions of the RG equation. Its derivatives
with respect to the hyper-parameters, generate examples of Entropic Dynamics in Neural Networks
Architectures (EDNNA) learning algorithms. For simple architectures, these algorithms can be shown
to yield optimal generalization in student- teacher scenarios.
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1. Introduction

Neural networks are information processing systems that learn from examples. Loosely inspired
in biological neural systems, they have been used for several types of problems such as classification,
regression, dimensional reduction and clustering [1]. Biological systems selection is based on a measure
of performance that combines not only accuracy but also ease of computation and implementation.
Predictions based on expectations over posterior Bayesian distributions may lead to saturating bounds
for optimal accuracy learning but will typically lack in ease of computation and speed in reaching
a result. Neural networks are parametric models and if we don’t address the determination of the
architecture, which we don’t in this paper, the problem of learning from examples is reduced to
obtaining fast estimates of the weights or parameters, avoiding the integration over large dimensional
spaces. The spectacular explosion of applications in several areas is witness to the fact that several
training methods and large data sets are available. Despite these victories, the mechanisms of
information dynamics processing remain obscure and despite several decades of theoretical analysis
using methods of Statistical Mechanics, much remains to be understood. Here we study on-line
learning in feed-forward architectures, where (input,output) examples are presented one at a time.
Theoretical analysis is easier than for batch or off-line learning where the cost function depends on
a large number of example pairs, however on-line accuracy performance remains high. This is in
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part due to the fact that since the cost function changes from example to example, the local minima
of the cost function that plague off-line learning are not so important. Local stationary points of the
learning dynamics are still a problem, but good performances are possible. An important problem to
be addressed is what cost function is the most appropriate. If an algorithm is going to be successful it
has to approach Bayesian estimates for the available information. But any Bayes algorithm leads to
high, even in the millions, dimensional integrals. Monte Carlo strategies cannot be used if simplicity is
a requirement. The strategy to determine optimized algorithms for on-line learning has been studied
in the past for restricted scenarios and architectures. We present a more general approach, with the
following strategy. We are in a situation of incomplete information, thus a probability distribution
represents, at a given point in the dynamics, what is known about the parameters. We have to commit
to a family of distributions and we choose a Maxent family. Location hyperparameters give the current
estimate of the weights. A new (input,output) example pair arrives and Bayes rule permits an update.
The choice of the likelihood is a reflection of what we know about the architecture of the NN. In general
it is not conjugated to the chosen family.

Still, the Bayes posterior, while not in the family, points to a unique member of the family, since it
imposes new constraints on the expected values of the generators.

The resulting learning algorithm is the entropic dynamics imposed by the arrival of information
in the examples that induces a change of the hyperparameters of the family. It turns out that changes
in the weights are in the direction of decreasing the model Bayesian evidence and it is a stochastic
gradient descent algorithm, where the cost function is the log evidence of the model.

The denominator of the Bayes update can be interpreted either as the evidence of the model or
alternatively as the predictive probability distribution of the output conditioned on the input and the
weights. Once it is written as the marginalization over the internal representation, i.e. the activation
values of the internal units, of the joint distribution of activities of the whole network, and under the
supposition that the information flows only from one layer to the next, a Markov chain structure follows.
Recursion relations of the partial evidence up to a given internal layer are obtained and in the continuous
depth limit (CDL) a Fokker-Planck parabolic partial differential equation is obtained. It generalizes
Wilson’s Renormalization Group [2] diffusion equation for general kernels. The usual, e.g., majority
rule that eliminates high frequency degrees of freedom are replaced by the weights of the NN. The RG
dynamics can be seen as a classifier of Statistical Mechanics microstates into thermodynamics states.
A NN extracts the relevant degrees of freedom that describe the macroscopic concept onto which an
input pattern is to be assigned. The first authors to relate the RG and NN were [3] and [4] generating a
large flow of ideas into the possible connections between these two areas [5-7].

2. Maxent Distributions and Bayesian Learning

Let fa(w), fora = 1,..K, w € RN, be the generators of a family Q of distributions Q(w|A).
If information about w is given in the form of constraints Eqg(f;) = F,, for the set of numbers
{Fa}a=1k, the Maxent distribution is

1 K
Q(w|r) = EEXp <_ Z/\ufa(w)> ’ 1)
i=1
where z ensures normalization. Then
dlnz Q(wlr)
i = —F and S0 (—f 4 F)QwA). @

Now consider a system learning a map from inputs x to outputs y, and the model is a known function
which depends on a parameter array w: y = T(x; w). The aim of learning is to obtain the parameters
from the information in the learning set D,, = {(x;, y;) }i=1,,. We want to obtain a distribution for the
parameters and consider that up to n — 1 examples the information is coded in a member of the Q
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family: Q(w|A,_1) = Q,_1. Calling the likelihood of the problem L,, = P(y,|x,, w), the product rule
permits the Bayesian updating
Qu-1Ln

P, = P(w|D,) = 7 ®3)

where the partition function or the evidence is Z(yu|xn, Ay—1) = [ Qu_1Lndw = P(yu|xnA,_1).
The Bayes posterior given by eq. 3 in general doesn’t belong to the Q family. We have to choose the
member of the family that is closest to the Bayes posterior. This is the Maxent posterior. The way to
proceed is based on the fact that a member of the Q family is determined solely by the values of the
constraints {F, }. The Bayes posterior defines a set of values for the constraints {(f,) }. It points in a
unique way to the Maxent posterior Q, within the family Q, obtained at the extreme of

Qn
Qn—l

SIQulIQu-1) = ~ [ Qulog o= dw — A (En(fa) ~ {fa) @
subject to the only possible constraints on its expected values E,( f,) which are taken to be the Bayes
posterior expected values (f;). Then for every generator

Eo,(f) = [ D5 flwidw = Ep, () = E. ®)

Subtract from both sides Fg_l, and use equation 2, then

dnZ

F'—F1 = BT
a

(6)
since the likelihood is independent of the Lagrange multiplier. This learning dynamics is deduced
from entropy maximization and thus will be called Entropic dynamics. Learning occurs along the
gradient of the log evidence. It will turn out that the sign is such that typically the evidence for the
new model is higher than before learning. These equations hold for any family, but it is interesting
to consider the case that will be most likely to be useful in practice, where the family is determined
by the functions fo = 1, fi = w; and f;; = w;w; , for i,j = 1, N. The constraints after n examples
are the normalization, E(w;) = ®,; and E(w;w;) = (Cy);j + W,;Wy;. The result is the gaussian family
Q xexp(—Ag— Y Aw; — Yiij )\i]-wiw]-). The entropic dynamics update equations, driven by the arrival
of the n'" example are

A,

w, = wy,_1+C,_1.Vyp, logZ, 7)
Ci = Cu1+Cu1.V5, l0gZ,.Cyy. ®)

For a layered network, these are the equations associated to the update of the weights afferent to a
particular unit in layer d from unit i in layer d — 1 and of the component of the covariance matrix
describing the correlation between weights coming from units 7 and j. The update equations, induced
by a maximum entropy approximation to Bayesian learning is the learning algorithm of the neural
network which implements the map y = T(x; W).

An approximation to this scheme was found for simple networks with no hidden units using a
variational procedure ([8]) and applied to several architectures [9-13]. Then Opper [14] showed the
Bayesian connection, explored elsewhere [15]. Recently it has been applied to societies of interacting
neural networks [16-19]. While [12] attacked the neural network with a hidden layer, the challenge
remains to study networks with deep architectures.
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3. Deep Multilayer Perceptron

In this section we show that the evidence for a multilayer feedforward neural network can be
written recursively as a map. Actually we will get two maps that are essentially the same. This type of
map is typical of Renormalization Group transformations and in a continuous limit representation of
the neural network as a field theory, we will show that the map leads to a partial differential equation
analogous to Wilson's diffusion-like RG equation.

We fix our attention at the 1" example, and hence don’t write temporal (lower) indices anymore.
A layer (upper) index now appears and x? is the internal representation at the the unit layer d.
Layers start with d = 0 and the depth of the network is D. Layer d weights are collectively
denoted w* and individually w;’lj is the weight connecting unit i at layer d — 1 to unit j at layer
d. The data pair used for the learning step are Xy and y. The distributions of the representation
at the input is 6(x° — X%) and at the output §(x” — y). The partition function Z(y,|x,,A,_1) in
Equation (3) is Z(XP[x%, 1) = [ Q(w|A)Ldw, where Q(w|A) is the prior joint distribution of the
weights over all the layers. We will eventually take this to be a product over layers, Q(w|A) =
HE:H] Q(w?|A,). which will permit a simpler analytical treatment, but it is not a necessity at this
moment. To obtain the likelihood we marginalize the joint distribution of the internal representations
P(xP,xP=1..x1x% w!,..wP) over all internal representations at the hidden units doing the same trick
that leads to the Chapman-Kolmogorov equation

D-1
L=PxP|x’ =X w!, . .wP) = /P(xD,xD_l,...xl\xO = X% w',..wP) T dx.
=1

©)
The evidence can be written as
. D-1
Zp(xP|X%, 1) = / QT (xP, xP~ a2 = X0, 1) T dx. (10)
d=1
where
QT (P, xP 1 atx? = X9 1) = /P(xD,fol....xl|x0 =X w!,..wP)
D-1
x [T Q(w*|A%)dw? (11)
d=1
is the joint transition distribution. Define the partially integrated Z; for any d = 1....D
d—1 ,
Za(xP, kP71 xx0,A) = /QT(xD,xD_l....x1|x0 =X%7) [T dx". (12)
d'=1
It satisfies the recursion
7, = / 7, qdxi1, (13)
and the evidence is b1
Zp = / Zy T ax* (14)
d'=d

At this point this is analogous to a Statistical Mechanics (SM) or euclidean field theory (EFT) partition
function in which all field configurations with momentum components above a cutoff have been
integrated out. The equivalent of the effective action of the EFT, or the renormalized hamiltonian in
the SM is — log Z,;.
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Now we get a similar map, where the renormalization group transformation of the internal
representations can be seen. Recall the likelihood in equation 9 and use the product rule

L=PP|xw!,. /P (xPxPtwp)P(xP 1 |20, wh, . de
and finally
[ = (Dlx w /HP d+l’x wd+1
Since the prior is also a product, then the partition function Zp = Zp(xP = y|x® = X0, {A9}) is
given by
. D D
Zp = / T[T Qe |A%) (x| 271, 20) [ | da®~dao’ (15)
d=1 d=1

We integrate over xo and xP with the constraints that their distribution are deltas at the input X° and
output y.

D
zp =11 [ aw* [ [ A 1Qua |A1) (e, )
d=1

Define the evidence up to a given layer p(x?), with initial condition p(x?) = 6(x? — X?) and
the map

(xd—l-l) _ /p(xd)P(xd‘H|xdwd+1)Qd+1(wd+l|/\d+1)dxddwd+1 (16)

The last step for the map of a network of depth D is for xP = y leading to the evidence of the model
defined by the architecture of the network with weight and hyperparameters given by the set of A;:

Zo(y) /p 2P~ P(xP[xP1wP) Qp (wP|AP)dxP~ dew? (17)

Define a layer to layer transition distribution
QR A = [ P, ) Q (Ao (18)
(19)

then, we have a map that gives the evidence after d layers as an integral over internal representations at
layer d — 1 of the evidence at layer d — 1 with a kernel Q7 that implements an aggregation RG-like step:

p(x!) = [dxTp(x" QL (x]x" 1, A% 20)

We have obtained two RG-like maps, Equations (13) and (20). Z; depends on all internal representations
from layer d to D and on all the hyperparameters A. The simpler p; only depends on the internal
representation at layer d and on the hyperparameters of the previous layers. The map for Z; is simpler
and the map for p; requires, at each step the input on the transition distribution QT (x%|x?~1, A4).
The transition distribution describes the renormalization group like transformation implemented by
the neural network that takes the internal representation at one layer to the next. It is simple to see that

D
Zg = p(xh) TT QT (=¥ +1x A) (21)
d'>d
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3.1. Generalized RG Differential Equation of a Neural Network in the Continuous Depth Limit

The layer index is obviously discrete, but we can take the continuous limit, where now layers are
represented by a time like T variable. A discrete variable i still labels the units. The evidence at depth
7T is related to the evidence at depth 1y by a generalization of Equation (20):

/ QT (x(1) ¥ (1), \)p(x', ) D, 22)

where the integration measure Dx = []; dx;. The distribution QT (x(7)|¥'(1), A) is the probability, that
a network with parameters A, conditional on being in state x” at 7y has an internal representation x at
depth . It must satisfy the composition law

Q"(x(r+ 0¥ (1), A) = [ QT(x(r+a7)|2(1),1)Q" (=(7)|¥ (), A)D=

For a deterministic neural network, conditional on the weights w, the evolution of the internal
representation is given by the transfer function. To obtain a well behaved limit it is supposed to
vary slowly:

xi(T+ A7) = Ti(x(1), w) = x;(7) + Ath;(x(7), w), (23)

so that interpretation of b is the gradient of the transfer function. The transition distribution is

Ol (x|t,x/,1,A) = [T ¢ (x(t+A1)—T( (1), w)) Q(w|A, T)dw,, (24)

' e(1,T]

obtained by integrating over all configuration of the weights in the slice. We have chosen a Gaussian
family to represent the informational state of the network, which now takes the form of a product of
Gaussians for all 7 slices:

Q(w|A, ) < ] Jexp —%{Aw Co Aw)
T

where Aw = w — @, and A = {W, C;} for all values of 7, but only the hyperparameters of the
particular slice under consideration matters. To define the continuous limit we impose that the limits
below exit:

&rﬁ)A—T/QT x|t + AT, %, 7,A)(x — x")Dx

]Ew[E(x(T) w] =b(x, T, 7),
lim — /Q (x|t + AT, ¥, T, )L)(x,—x)(x]-—x;-)Dx =

ATI0 AT
w[Ei(x(T),w)Ej(x(T),w)] = Bjj(x', T, A). (25)

At each layer the drift vector b(x’, T, A) is the expected value of the change in internal representation
and the diffusion matrix B;;(x’, T, A) to the expectation of quadratic change, which are related to the
expected values of the gradient and Hessian of the transfer function respectively. As usual, take the
time derivative of the expected value, with respect to QT (x|x’, A) of a well behaved test function g(x).
Taylor expand g(x) around x” and integrate by parts, use that g(x) is arbitrary and obtain that QT
satisfies a parabolic PDE and so does the evidence (see Equation (22))

Jo(x, 9 1 02
P(BJ;T) _ _aTCi(bi(x,T,)\)p(x, 7)) + EW(Bij(x,T,)\)P(x,T))- (26)

The long time limit of Equation (26) is the predictive distribution p(y, T = D) = P(y|xo,A).
Equation (26) is a generalization of an analogous diffusion equation which appears in Wilson’s



Proceedings 2019, 33, 10 70f8

incomplete integration formulation of the renormalization group (e.g., [2]). It extends the type
of transformation by permitting that the transformations that leads from 7 to T + dt are not a
simple spatial average, which would eliminate high spatial frequency components. Instead, the
transformations are mediated by the weights . It differs from the usual statistical mechanics or field
theories also in the following sense. In those approaches, the transformation @ is known and uniform
and the aim is to obtain the final pp, which describes the infrared limit or the thermodynamics of the
theory. In supervised learning in neural networks, the starting point, defined by the input X" and the
output Y are given. The problem is to find the correct set of weights @ that implements the correct
input-output association. There are two regimes for the neural network. In the learning phase the set
of examples is a set of microscopic-macroscopic variables that describe a task. The aim of learning
is to determine the appropriate generalized RG transformation that maps from the microscopic
description to the macroscopic. After learning, the network is used to find out, for the current
RG transformation, the unknown macroscopic generalized thermodynamics or infrared properties
associated to the microstate. The next step is to derive optimized learning algorithms, from the
solutions of Equation (26) and the EDNNA learning described by (7) and (8).
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