Geological Materials as Sources of Rn Emissions †
Abstract
:1. Introduction
2. Analysis of publications
3. Final Considerations
Author Contributions
Funding
Conflicts of Interest
References
- Markkanen, M. Radiation Dose Assessments for Materials with Elevated Natural Radioactivity; STUK-BSTO 32; Finnish Center for Radiation and Nuclear Safety: Helsinki, Finland, 1995. [Google Scholar]
- UNSCEAR-United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation; Report to the General Assembly, with Scientific Annexes; UN: New York, NY, USA, 2000. [Google Scholar]
- Allen, J.G.; Minegishi, T.; Myatt, T.A.; Stewart, J.H.; Mccarthy, J.F.; Macintosh, D.L. Assessing exposure to granite countertops—Part 2: Radon. J. Expos. Sci. Environ. Epidemiol. 2010, 20, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.P. Radon exhalation rates from stone and soil samples of Aravali hills in India. Int. J. Radiat. Res. 2001, 9, 57–61. [Google Scholar]
- Marocchi, M.; Righi, S.; Bargossi, G.M.; Gasparotto, G. Natural radionuclides content and radiological hazard of commercial ornamental stones: An integrated radiometric and mineralogical-petrographic study. Radiat. Meas. 2011, 46, 538–545. [Google Scholar] [CrossRef]
- Moura, C.; Artur, A.; Bonotto, D.; Guedes, S.; Martinelli, C. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks. Appl. Radiat. Isot. 2011, 69, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Gómez, D.P.; Neves, L.; Pereira, A.; Neila, C.G. Natural radioactivity in ornamental stones: an approach to its study using stones from Iberia. Bull. Int. Assoc. Eng. Geol. 2011, 70, 543–547. [Google Scholar] [CrossRef]
- Pereira, D.; Neves, L.; Pereira, A.; Peinado, M.; Blanco, J.A.; Tejado, J.J. A radiological study of some ornamental stones: the bluish granites from Extremadura (Spain). Nat. Hazards Earth Syst. Sci. 2012, 12, 395–401. [Google Scholar] [CrossRef]
- Bavarnegin, E.; Fathabadi, N.; Moghaddam, M.V.; Farahani, M.V.; Moradi, M.; Babakhni, A. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran. J. Environ. Radioact. 2013, 117, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Pereira, D.; Neves, L.; Peinado, M.; Armenteros, I. Radiological data on building stones from a Spanish region: Castilla y León. Nat. Hazards Earth Syst. Sci. 2013, 13, 3493–3501. [Google Scholar] [CrossRef]
- Rafique, M.; Rathore, M.H. Determination of radon exhalation from granite, dolerite and marbles decorative stones of the Azad Kashmir area, Pakistan. Int. J. Environ. Sci. Technol. 2013, 10, 1083–1090. [Google Scholar] [CrossRef]
- Guillén, J.; Tejado, J.; Baeza, A.; Corbacho, J.; Muñoz, J. Assessment of radiological hazard of commercial granites from Extremadura (Spain). J. Environ. Radioact. 2014, 132, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.; Azevedo, M.R.; Neto, J.N.; Pereira AJ, S.C.; Artur, A.C. Caracterização tecnológica do monzogranito Serra Branca (Ceará, Brasil). Comunicações Geológicas 2014, 101, 799–802. (In Portuguese) [Google Scholar]
- Andrade, E.; Miró, C.; Reis, M.; Santos, M.; Madruga, M.J. Assessment of radium activity concentration and radon exhalation rates in iberian peninsula building materials. Radiat. Prot. Dosim. 2017, 177, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Turhan, S.; Atıcı, E.; Varinlioglu, A. Radiometric analysis of volcanic tuff stones used as ornamental and structural building materials in Turkey and evaluation of radiological risk. Radioprotection 2015, 50, 273–280. [Google Scholar] [CrossRef]
- Kayakökü, H.; Karatepe, Ş.; Doğru, M.; Kayakökü, K. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey. Appl. Radiat. Isot. 2016, 115, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Sanjurjo-Sánchez, J.; Alves, C. Geologic materials and gamma radiation in the built environment. Environ. Chem. Lett. 2017, 15, 561–589. [Google Scholar] [CrossRef]
- IAEA—International Atomic Energy Agency. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; IAEA-TECDOC-1363; IAEA: Vienna, Austria, 2003. [Google Scholar]
- Laznicka, P. Giant metallic deposits—A century of progress. Ore Geol. Rev. 2014, 62, 259–314. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, C.; Sanjurjo-Sánchez, J. Geological Materials as Sources of Rn Emissions. Proceedings 2019, 24, 17. https://doi.org/10.3390/IECG2019-06193
Alves C, Sanjurjo-Sánchez J. Geological Materials as Sources of Rn Emissions. Proceedings. 2019; 24(1):17. https://doi.org/10.3390/IECG2019-06193
Chicago/Turabian StyleAlves, Carlos, and Jorge Sanjurjo-Sánchez. 2019. "Geological Materials as Sources of Rn Emissions" Proceedings 24, no. 1: 17. https://doi.org/10.3390/IECG2019-06193
APA StyleAlves, C., & Sanjurjo-Sánchez, J. (2019). Geological Materials as Sources of Rn Emissions. Proceedings, 24(1), 17. https://doi.org/10.3390/IECG2019-06193