Acoustic Emission Health Monitoring of Historical Masonry to Evaluate Structural Integrity under Incremental Cyclic Loading †
Abstract
:1. Introduction
1.1. Materials and Set-Up
1.2. Ultrasound—AE Testing
2. Results
2.1. Ultrasonic Pulse Velocity Testing
2.2. Mechanical Response—Damage Localization
3. Conclusions
Acknowledgments
References
- Van Balen, K.; Papayianni, I.; van Hees, R.; Binda, L.; Waldum, A. RILEM TC 167-COM: Characterisation of old mortars with respect to their repair Introduction to requirements for and functions and properties of repair mortars. Mater. Struct. 2005, 38, 781–785. [Google Scholar] [CrossRef]
- Verstrynge, E.; de Wilder, K.; Drougkas, A.; Voet, E.; van Balen, K.; Wevers, M. Crack monitoring in historical masonry with distributed strain and acoustic emission sensing techniques. Constr. Build. Mater. 2018, 162, 898–907. [Google Scholar] [CrossRef]
- Griffith, A.A.; Eng, M.VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 1921, 221, 163–198. [Google Scholar]
- Maji, A.; Shah, S.P. Process zone and acoustic-emission measurements in concrete. Exp. Mech. 1988, 28, 27–33. [Google Scholar] [CrossRef]
- Kundu, T. Acoustic source localization. Ultrasonics 2014, 54, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Matt, H.M.; di Scalea, F.L. Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater. Struct. 2007, 16, 1489. [Google Scholar] [CrossRef]
- Jiao, J.; He, C.; Wu, B.; Fei, R.; Wang, X. Application of wavelet transform on modal acoustic emission source location in thin plates with one sensor. Int. J. Press. Vessel. Pip. 2004, 81, 427–431. [Google Scholar] [CrossRef]
- McLaskey, G.C.; Glaser, S.D.; Grosse, C.U. Beamforming array techniques for acoustic emission monitoring of large concrete structures. J. Sound Vib. 2010, 329, 2384–2394. [Google Scholar] [CrossRef]
- Nakatani, H.; Hajzargarbashi, T.; Ito, K.; Kundu, T.; Takeda, N. Locating Point of Impact on an Anisotropic Cylindrical Surface Using Acoustic Beamforming Technique. In Key Engineering Materials; Trans Tech Publications, 2013; Volume 558, pp. 331–340. [Google Scholar]
- Tobias, A. Acoustic-emission source location in two dimensions by an array of three sensors. Non-Destr. Test. 1976, 9, 9–12. [Google Scholar] [CrossRef]
- Kundu, T.; Das, S.; Martin, S.A.; Jata, K.V. Locating point of impact in anisotropic fiber reinforced composite plates. Ultrasonics 2008, 48, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Tsangouri, E.; Karaiskos, G.; Deraemaeker, A.; van Hemelrijck, D.; Aggelis, D. Assessment of Acoustic Emission localization accuracy on damaged and healed concrete. Constr. Build. Mater. 2016, 129, 163–171. [Google Scholar] [CrossRef]
- Ongpeng, J.M.C.; Oreta, A.W.C.; Hirose, S. Monitoring Damage Using Acoustic Emission Source Location and Computational Geometry in Reinforced Concrete Beams. Appl. Sci. 2018, 8, 189. [Google Scholar] [CrossRef]
- Ebrahimkhanlou, A.; Salamone, S. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections. Ultrasonics 2017, 78, 134–145. [Google Scholar] [CrossRef]
- Pearson, M.R.; Eaton, M.; Featherston, C.; Pullin, R.; Holford, K. Improved acoustic emission source location during fatigue and impact events in metallic and composite structures. Struct. Health Monit. 2017, 16, 382–399. [Google Scholar] [CrossRef]
- Dong, L.; Zou, W.; Li, X.; Shu, W.; Wang, Z. Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining. Eng. Fract. Mech. 2018. [Google Scholar] [CrossRef]
- Bosia, F.; Pugno, N.; Lacidogna, G.; Carpinteri, A. Mesoscopic modeling of Acoustic Emission through an energetic approach. Int. J. Solids Struct. 2008, 45, 5856–5866. [Google Scholar] [CrossRef]
- Hendrickx, R. The Adequate Measurement of the Workability of Masonry Mortar. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2009. [Google Scholar]
- Guéguen, Y.; Palciauskas, V. Introduction to the Physics of Rocks; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Stanchits, S.; Vinciguerra, S.; Dresen, G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure Appl. Geophys. 2006, 163, 975–994. [Google Scholar] [CrossRef]
- Ohtsu, M.; Yuyama, S. Recommended Practice for In Situ Monitoring of Concrete Structures by Acoustic Emission. In Proceedings of the 15th International Acoustic Emission Symposium, Tokyo, Japan, 11–14 September 2000; pp. 263–268. [Google Scholar]
Composition | Cement (CM) | Lime—Cement (LC) | Hydraulic Lime (HL) | Lime Hydrate (HL) |
---|---|---|---|---|
River Sand (g) | 2700 | 2700 | 2700 | 2700 |
Binder (g) | 666.9 CEM I 42.5 R, Portland cement | 572.5 | 572.4 NHL5 (EN 459-1:2001) | 342.9 CL90S (EN 459-1:2001) |
66.7% CL90S (EN 459-1:2001) | ||||
33.3% CEM I 42.5 R | ||||
Water at 20 °C (g) | 604.9 | 583.3 | 630.8 | 620.6 |
Volume density (kg/m3) | 1960 | 1758 | 1746 | 1662 |
Masonry Walls | AE Wave Velocity [m/s] | fm [MPa] | Max Strain |
---|---|---|---|
Cement Mortar wall (CM) | 1000-1200 | 6.12 | 0.0083 |
Lime-Cement wall (LC) | 950-1150 | 3.86 | 0.0072 |
Hydraulic Lime wall (HL) | 850-1000 | 4.85 | 0.0092 |
Lime Hydrate wall (LH) | 700-800 | 1.95 | 0.0062 |
Masonry Walls | Velocity [m/s] | Length of Bricks | Length of Mortar Joints | % of Brick Material |
---|---|---|---|---|
Path 1 Vx 1 | 1446 | 376 mm | 12 mm | 97% |
Path 2 Vx 2 | 1273 | 364 mm | 24 mm | 94% |
Path 3 Vy | 760 | 316 mm | 72 mm | 81% |
LC | Homogeneous Planar 2D Location | Orthotropic Planar 2D Location | |
---|---|---|---|
Horizontal Vx | 1446 | V = 1446 m/s (Vx = Vy)2285 events | Vx = 1446 m/s, Vy = 760 m/s2952 events |
Vertical Vy | 760 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livitsanos, G.; Shetty, N.; Verstrynge, E.; Wevers, M.; Hemelrijck, D.V.; Aggelis, D.G. Acoustic Emission Health Monitoring of Historical Masonry to Evaluate Structural Integrity under Incremental Cyclic Loading. Proceedings 2018, 2, 508. https://doi.org/10.3390/ICEM18-05417
Livitsanos G, Shetty N, Verstrynge E, Wevers M, Hemelrijck DV, Aggelis DG. Acoustic Emission Health Monitoring of Historical Masonry to Evaluate Structural Integrity under Incremental Cyclic Loading. Proceedings. 2018; 2(8):508. https://doi.org/10.3390/ICEM18-05417
Chicago/Turabian StyleLivitsanos, Georgios, Naveen Shetty, Els Verstrynge, Martine Wevers, Danny Van Hemelrijck, and Dimitrios G. Aggelis. 2018. "Acoustic Emission Health Monitoring of Historical Masonry to Evaluate Structural Integrity under Incremental Cyclic Loading" Proceedings 2, no. 8: 508. https://doi.org/10.3390/ICEM18-05417
APA StyleLivitsanos, G., Shetty, N., Verstrynge, E., Wevers, M., Hemelrijck, D. V., & Aggelis, D. G. (2018). Acoustic Emission Health Monitoring of Historical Masonry to Evaluate Structural Integrity under Incremental Cyclic Loading. Proceedings, 2(8), 508. https://doi.org/10.3390/ICEM18-05417