Effect of Open Soil Surface Patterns on Soil Detectability Based on Optical Remote Sensing Data †
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. The Effect of Destroying SFP on Spectral Reflectance of Upper Soil Horizon
3.2. The Influence of the Dynamics of SFP on Spectral Reflectance of Upper Soil Horizon
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bowers, S.A.; Hanks, R.J. Reflectance of radiant energy from soils. Soil Sci. 1965, 100, 130–138. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.9032&rep=rep1&type=pdf (accessed on 10 December 2017). [CrossRef]
- Sinha, A.K. Spectral reflectance characteristics of soil and its correlation with soil properties and surface conditions. J. Indian Soc. Remote Sens. 1986, 14, 1–9. [Google Scholar] [CrossRef]
- Coleman, T.L.; Agbu, P.A.; Montgomery, O.L. Spectral differentiation on surface soils and soil properties: Is it possible from space platforms? Soil Sci. 1993, 155, 283–293. [Google Scholar] [CrossRef]
- Orlov, D.S. Spectral Reflectance of Soils and Their Components; Moscow State University: Moscow, Russia, 2001. [Google Scholar]
- Fox, G.A.; Sabbagh, G.J. Estimation of soil organic matter from red and near-infrared remotely sensed data using a soil line Euclidian distance technique. Soil Sci. Soc. Am. J. 2002, 66, 1922–1928. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Bausch, W.C. Remote- and Ground-Based Sensor Techniques to Map Soil Properties. Photogramm. Eng. Remote Sens. 2003, 69, 619–630. [Google Scholar]
- Metternicht, G. ; Zinck. J.A. Remote Sensing of Soil Salinization. Impact on Land Management; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Belinaso, H.; Demattê, J.A.M.; Remerio, S.A. Soil spectral library and its use in soil classification. Rev. Bras. Cienc. Solo 2010, 34, 861–870. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Sankey, J.B.; Brown, D.J.; Bernard, M.L.; Lawrence, R.L. Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C. Geoderma 2008, 148, 149–158. [Google Scholar] [CrossRef]
- Rossel, R.A.; Webster, R. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. Eur. J. Soil Sci. 2012, 63, 848–860. [Google Scholar] [CrossRef]
- Stevens, A.; van Wesemael, B.; Bartholomeus, H.; Rosillon, D.; Tychon, B.; Ben-Dor, E. Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma 2008, 144, 395–404. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.; Peng, J.; Ji, W.; Liu, H.; Li, X.; Viscarra Rossel, R.A. Development of national VNIR soil-spectral library for soil classification and the predictions of organic matter. Sci. China Earth Sci. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- Gogé, F.; Gomez, C.; Jolivet, C.; Joffre, R. Which strategy is best to predict soil properties of a local site from a national Vis-NIR database? Geoderma 2014, 213, 1–9. [Google Scholar] [CrossRef]
- Morgan, C.L.S.; Waiser, T.H.; Brown, D.J.; Hallmark, C.T. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma 2009, 151, 249–256. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Hummel, J.W. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Trans. ASAE 1993, 36, 1571–1582. [Google Scholar] [CrossRef]
- Waiser, T.H.; Morgan, C.L.S.; Brown, D.J.; Hallmark, C.T. In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 2007, 71, 389–396. [Google Scholar] [CrossRef]
- Ackerson, J.P.; Demattê, J.A.; Morgan, C.L. Predicting clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external parameter orthogonalization. Geoderma 2015, 259, 196–204. [Google Scholar] [CrossRef]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Rossel, R.A.V.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage Res. 2015, 155, 492–500. [Google Scholar] [CrossRef]
- Chappell, A.; Zobeck, T.M.; Brunner, G. Using on-nadir spectral reflectance to detect soil surface changes induced by simulated rainfall and wind tunnel abrasion. Earth Surface Process. Landf. 2005, 30, 489–511. [Google Scholar] [CrossRef]
- Zhu, A.; Liu, F.; Li, B.; Pei, T.; Qin, C.; Liu, G.; Wang, Y.; Chen, Y.; Ma, X.; Qi, F.; et al. Differentiation of soil conditions over low relief areas using feedback dynamic patterns. Soil Sci. Soc. Am. J. 2010, 74, 861–869. [Google Scholar] [CrossRef]
- Liu, F.; Geng, X.; Zhu, A.X.; Fraser, W.; Waddell, A. Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS. Geoderma 2012, 171, 44–52. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Irons, J.R.; Epema, G. Soil reflectance. In Remote Sensing for the Earth Sciences; Renzc, A.N., Ed.; Wiley: New York, NY, USA, 1999; Volume 3, pp. 111–188. [Google Scholar]
- Standards. GOST 26213-91. Soils. Methods of Determination of Organic Matter Content; Publisher of Standards: Moscow, Russia, 1992. [Google Scholar]
- Standards. GOST 12536-79. Soils. Methods of Laboratory Assessment of Texture and Microaggregate Composition; Publisher of Standards: Moscow, Russia, 2003. [Google Scholar]
- Prudnikova, E.Y.; Savin, I.Y. Satellite assessment of dehumification of arable soils in Saratov region. Eurasian Soil Sci. 2015, 48, 533–539. [Google Scholar] [CrossRef]
- Prudnikova, E.Y.; Savin, I.Y.; Vasilyeva, N.A.; Veretelnikova, I.V.; Bairamov, A.N. The color of soils as a basis for proximal sensing of their composition. Byulleten Pochvennogo Inst. Dokuchaeva 2016, 86, 46–52. [Google Scholar]
- Prudnikova, E.Y.; Savin, I.Y. Study of the optical properties of an exposed soil surface. J. Opt. Technol. 2016, 83, 642–647. [Google Scholar] [CrossRef]
Parameter 1 | Properties | |||
---|---|---|---|---|
Organic Matter | Coarse and Medium Sand Particles | Fine Sand Particles | Coarse Silt Particles | |
lt1 | 0.61/0.02 | −0.27/0.03 | −0.56/−0.5 | 0.48/0.58 |
lt3 | 0.44/0.05 | −0.21/0.01 | −0.61/−0.37 | 0.56/0.39 |
st1 | 0.59/0.05 | −0.32/0.02 | −0.55/−0.52 | 0.47/0.6 |
st13 | 0.26/−0.03 | 0.09/0.02 | −0.7/−0.1 | 0.64/0.07 |
st3 | 0.49/0.05 | −0.19/0.01 | −0.64/−0.37 | 0.57/0.39 |
lt12 | 0.14/0.21 | −0.61/−0.18 | 0.46/−0.43 | −0.3/0.58 |
lt23 | −0.32/−0.21 | 0.52/−0.14 | −0.31/0.77 | 0.33/−0.8 |
lt13 | 0.27/0.19 | −0.68/−0.06 | 0.46/−0.59 | −0.38/0.72 |
lt14 | 0.09/0.09 | −0.51/0.01 | 0.4/−0.64 | −0.27/0.74 |
lt24 | −0.06/0.03 | −0.36/0.12 | 0.42/−0.64 | −0.35/0.67 |
Parameter | Seasonality | Seasonality/Tillage | Seasonality/Year | Tillage | ||
---|---|---|---|---|---|---|
Non-Tilled | Tilled | 2014 | 2015 | |||
2nd test plot | ||||||
Pillai’s trace | 1.24 | 1.54 | 0.90 | 0.53 | 1.05 | 0.28 |
F | 6.01 | 6.26 | 2.48 | 3.24 | 5.17 | 7.83 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
eta squared | 0.25 | 0.38 | 0.22 | 0.27 | 0.35 | 0.28 |
3rd test plot | ||||||
Pillai’s trace | 1.30 | 0.91 | 1.16 | 1.16 | 0.91 | 0.50 |
F | 12.22 | 23.41 | 7.06 | 7.06 | 23.41 | 45.23 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
eta squared | 0.22 | 0.46 | 0.29 | 0.29 | 0.46 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudnikova, E.; Savin, I. Effect of Open Soil Surface Patterns on Soil Detectability Based on Optical Remote Sensing Data. Proceedings 2018, 2, 357. https://doi.org/10.3390/ecrs-2-05170
Prudnikova E, Savin I. Effect of Open Soil Surface Patterns on Soil Detectability Based on Optical Remote Sensing Data. Proceedings. 2018; 2(7):357. https://doi.org/10.3390/ecrs-2-05170
Chicago/Turabian StylePrudnikova, Elena, and Igor Savin. 2018. "Effect of Open Soil Surface Patterns on Soil Detectability Based on Optical Remote Sensing Data" Proceedings 2, no. 7: 357. https://doi.org/10.3390/ecrs-2-05170
APA StylePrudnikova, E., & Savin, I. (2018). Effect of Open Soil Surface Patterns on Soil Detectability Based on Optical Remote Sensing Data. Proceedings, 2(7), 357. https://doi.org/10.3390/ecrs-2-05170