High Resolution Historical Topography: Getting More from Archival Aerial Photographs †
Abstract
1. Introduction
2. Study Area
3. Materials
4. Procedure to Obtain the Photogrammetric DSM
5. Ground Control Points
6. Results and Discussion
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Godone, D.; Garbarino, M.; Sibona, E.; Garnero, G.; Godone, F. Fotogrammi storici, uno strumento per rappresentare l’italia che cambia. In Bollettino Dell’Associazione Italiana di Cartografia; EUT Edizioni Università di Trieste: Trieste, Italy, 2011. [Google Scholar]
- Pulighe, G. Ortorettifica di foto e aree storiche per lo studio delle dinamiche ambientali in regioni montane. GEOmedia 2009, 13, 3. [Google Scholar]
- Nocerino, E.; Remondino, F. Uso consapevole di software speditivi per la ricostruzione 3D. GEOmedia 2016, 20, 40–42. [Google Scholar]
- Remondino, F.; Pizzo, S.D.; Kersten, T.P.; Troisi, S. Low-Cost and Open-Source Solutions for Automated Image Orientation—A Critical Overview. In Progress in Cultural Heritage Preservation; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–54. [Google Scholar]
- Mertes, J.R.; Gulley, J.D.; Benn, D.I.; Thompson, S.S.; Nicholson, L.I. Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery. Earth Surf. Process. Landf. 2017, 42, 2350–2364. [Google Scholar] [CrossRef]
- Jaud, M.; Passot, S.; Le Bivic, R.; Delacourt, C.; Grandjean, P.; Le Dantec, N. Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-Optimal Survey Conditions. Remote Sens. 2016, 8, 465. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Moutinho, O.; Gonçalves, J.A. Open-source GIS application for UAV photogrammetry based on MicMac. Int. J. Remote Sens. 2017, 38, 3181–3202. [Google Scholar] [CrossRef]
- Benassi, F.; Dall’Asta, E.; Diotri, F.; Forlani, G.; Morra di Cella, U.; Roncella, R.; Santise, M. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sens. 2017, 9, 172. [Google Scholar] [CrossRef]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F.; Gonizzi-Barsanti, S. Dense image matching: Comparisons and analyses. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; Volume 1, pp. 47–54. [Google Scholar]
- Bakker, M.; Lane, S.N. Structure from Motion (SfM) photogrammetry applied to historical imagery: Plug & play? Remote Sens. 2017, 1. [Google Scholar]
- Ince, D.C.; Hatton, L.; Graham-Cumming, J. The case for open computer programs. Nature 2012, 482, 485. [Google Scholar] [CrossRef]
- Minelli, A.; Oggioni, A.; Pugnetti, A.; Sarretta, A.; Bastianini, M.; Bergami, C.; Aubry, F.B.; Camatti, E.; Scovacricchi, T.; Socal, G. The project EcoNAOS: Vision and practice towards an open approach in the Northern Adriatic Sea ecological observatory. Res. Ideas Outcomes 2018, 4, e24224. [Google Scholar] [CrossRef][Green Version]
- Mölg, N.; Bolch, T. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens. 2017, 9, 1021. [Google Scholar] [CrossRef]
- Rupnik, E.; Daakir, M.; Pierrot Deseilligny, M. MicMac—A free, open-source solution for photogrammetry. Open Geospat. Data Softw. Stand. 2017, 2, 14. [Google Scholar] [CrossRef]
- Istituto Geografico Militare Italiano Sample of Aerial Photograph. Available online: https://www.igmi.org/geoprodotti/foto-aeree/1954/TIFF_800_DPI_non_fotogrammetrico/fotogramma-1484563254.8 (accessed on 15 March 2017).
- Deseilligny, M.P.; Cléry, I. Apero, an open source bundle adjusment software for automatic calibration and orientation of set of images. In Proceedings of the ISPRS Symposium, Trento, Italy, 2–4 March 2011;., 3DARCH11; Volume 269277.
- Santangelo, M.; Marchesini, I.; Bucci, F.; Cardinali, M.; Fiorucci, F.; Guzzetti, F. An approach to reduce mapping errors in the production of landslide inventory maps. Nat. Hazards Earth Syst. Sci. 2015, 15, 2111–2126. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Menna, F. Multi-temporal analysis of landscapes and urban areas. ISPRS 2012, XXXIX-B4, 85–90. [Google Scholar] [CrossRef]
- Pulighe, G.; Fava, F. DEM extraction from archive aerial photos: Accuracy assessment in areas of complex topography. Eur. J. Remote Sens. 2013, 46, 363–378. [Google Scholar] [CrossRef]
- Pontius, R.G.; Thontteh, O.; Chen, H. Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 2008, 15, 111–142. [Google Scholar] [CrossRef]
Dataset Name | 400g8 | 800g8 | 1600g8 | 2400g8 | 400g16 | 800g16 | 1600g16 | 2400g16 |
---|---|---|---|---|---|---|---|---|
Scanned images | ||||||||
Resolution [dpi] | 400 | 800 | 1600 | 2400 | 400 | 800 | 1600 | 2400 |
Color depth [bit] | 8 | 8 | 8 | 8 | 16 | 16 | 16 | 16 |
Pixel size [μm] | 56 | 28 | 14 | 9 | 56 | 28 | 14 | 9 |
Approx. GSD [m] | 1.91 | 0.95 | 0.48 | 0.32 | 1.91 | 0.95 | 0.48 | 0.32 |
Sparse point cloud | ||||||||
Tie points [thousands] | 62.1 | 79.9 | 75.4 | 66.6 | 62.4 | 79.7 | 75.4 | 66.8 |
BBA P.E. [px] | 0.32 | 0.459 | 0.71 | 0.981 | 0.319 | 0.469 | 0.725 | 0.981 |
BBA & GCP, P.E. [px] | 0.363 | 0.512 | 0.683 | 0.949 | 0.362 | 0.537 | 0.789 | 0.948 |
BBA & GCP, P.E. [m] | 0.69 | 0.49 | 0.33 | 0.3 | 0.69 | 0.51 | 0.38 | 0.3 |
Dense point cloud | ||||||||
Mean density [p/m] | 0.33 | 1.33 | 5.31 | 11.74 | 0.33 | 1.33 | 5.3 | 11.77 |
DSM | ||||||||
DSM Resolution [m] | 2 | 1 | 0.5 | 0.35 | 2 | 1 | 0.5 | 0.35 |
Computation time | ||||||||
Tapioca [min] | 6 | 21 | 30 | 40 | 6 | 22 | 28 | 40 |
Malt [min] | 23 | 87 | 449 | 1294 | 19 | 84 | 430 | 1175 |
Internal coherence | ||||||||
3D MAE [m] | 0.27 | 0.11 | 0.20 | 0.27 | 0.36 | 0.16 | 0.23 | 0.27 |
3D RMSE [m] | 0.50 | 0.16 | 0.28 | 0.40 | 0.59 | 0.20 | 0.40 | 0.40 |
Model validation | ||||||||
Mean [m] | −0.81 | −0.2 | −1.08 | −0.89 | −1.01 | −0.21 | −1.18 | −0.94 |
Median [m] | −0.48 | −0.36 | −0.92 | −0.77 | −0.48 | −0.36 | −0.92 | −0.77 |
Standard dev. [m] | 2.51 | 2.11 | 1.66 | 1.79 | 2.65 | 1.97 | 1.7 | 1.85 |
H-MAE [m] | 1.96 | 1.66 | 1.52 | 1.54 | 2.06 | 1.54 | 1.6 | 1.58 |
H-RMSE [m] | 2.64 | 2.11 | 1.98 | 2 | 2.84 | 1.97 | 2.07 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seccaroni, S.; Santangelo, M.; Marchesini, I.; Mondini, A.C.; Cardinali, M. High Resolution Historical Topography: Getting More from Archival Aerial Photographs. Proceedings 2018, 2, 347. https://doi.org/10.3390/ecrs-2-05160
Seccaroni S, Santangelo M, Marchesini I, Mondini AC, Cardinali M. High Resolution Historical Topography: Getting More from Archival Aerial Photographs. Proceedings. 2018; 2(7):347. https://doi.org/10.3390/ecrs-2-05160
Chicago/Turabian StyleSeccaroni, Simone, Michele Santangelo, Ivan Marchesini, Alessandro C. Mondini, and Mauro Cardinali. 2018. "High Resolution Historical Topography: Getting More from Archival Aerial Photographs" Proceedings 2, no. 7: 347. https://doi.org/10.3390/ecrs-2-05160
APA StyleSeccaroni, S., Santangelo, M., Marchesini, I., Mondini, A. C., & Cardinali, M. (2018). High Resolution Historical Topography: Getting More from Archival Aerial Photographs. Proceedings, 2(7), 347. https://doi.org/10.3390/ecrs-2-05160