High Resolution Historical Topography: Getting More from Archival Aerial Photographs †
Abstract
:1. Introduction
2. Study Area
3. Materials
4. Procedure to Obtain the Photogrammetric DSM
5. Ground Control Points
6. Results and Discussion
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Godone, D.; Garbarino, M.; Sibona, E.; Garnero, G.; Godone, F. Fotogrammi storici, uno strumento per rappresentare l’italia che cambia. In Bollettino Dell’Associazione Italiana di Cartografia; EUT Edizioni Università di Trieste: Trieste, Italy, 2011. [Google Scholar]
- Pulighe, G. Ortorettifica di foto e aree storiche per lo studio delle dinamiche ambientali in regioni montane. GEOmedia 2009, 13, 3. [Google Scholar]
- Nocerino, E.; Remondino, F. Uso consapevole di software speditivi per la ricostruzione 3D. GEOmedia 2016, 20, 40–42. [Google Scholar]
- Remondino, F.; Pizzo, S.D.; Kersten, T.P.; Troisi, S. Low-Cost and Open-Source Solutions for Automated Image Orientation—A Critical Overview. In Progress in Cultural Heritage Preservation; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–54. [Google Scholar]
- Mertes, J.R.; Gulley, J.D.; Benn, D.I.; Thompson, S.S.; Nicholson, L.I. Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery. Earth Surf. Process. Landf. 2017, 42, 2350–2364. [Google Scholar] [CrossRef]
- Jaud, M.; Passot, S.; Le Bivic, R.; Delacourt, C.; Grandjean, P.; Le Dantec, N. Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-Optimal Survey Conditions. Remote Sens. 2016, 8, 465. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Moutinho, O.; Gonçalves, J.A. Open-source GIS application for UAV photogrammetry based on MicMac. Int. J. Remote Sens. 2017, 38, 3181–3202. [Google Scholar] [CrossRef]
- Benassi, F.; Dall’Asta, E.; Diotri, F.; Forlani, G.; Morra di Cella, U.; Roncella, R.; Santise, M. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sens. 2017, 9, 172. [Google Scholar] [CrossRef]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F.; Gonizzi-Barsanti, S. Dense image matching: Comparisons and analyses. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; Volume 1, pp. 47–54. [Google Scholar]
- Bakker, M.; Lane, S.N. Structure from Motion (SfM) photogrammetry applied to historical imagery: Plug & play? Remote Sens. 2017, 1. [Google Scholar]
- Ince, D.C.; Hatton, L.; Graham-Cumming, J. The case for open computer programs. Nature 2012, 482, 485. [Google Scholar] [CrossRef]
- Minelli, A.; Oggioni, A.; Pugnetti, A.; Sarretta, A.; Bastianini, M.; Bergami, C.; Aubry, F.B.; Camatti, E.; Scovacricchi, T.; Socal, G. The project EcoNAOS: Vision and practice towards an open approach in the Northern Adriatic Sea ecological observatory. Res. Ideas Outcomes 2018, 4, e24224. [Google Scholar] [CrossRef]
- Mölg, N.; Bolch, T. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens. 2017, 9, 1021. [Google Scholar] [CrossRef]
- Rupnik, E.; Daakir, M.; Pierrot Deseilligny, M. MicMac—A free, open-source solution for photogrammetry. Open Geospat. Data Softw. Stand. 2017, 2, 14. [Google Scholar] [CrossRef]
- Istituto Geografico Militare Italiano Sample of Aerial Photograph. Available online: https://www.igmi.org/geoprodotti/foto-aeree/1954/TIFF_800_DPI_non_fotogrammetrico/fotogramma-1484563254.8 (accessed on 15 March 2017).
- Deseilligny, M.P.; Cléry, I. Apero, an open source bundle adjusment software for automatic calibration and orientation of set of images. In Proceedings of the ISPRS Symposium, Trento, Italy, 2–4 March 2011;., 3DARCH11; Volume 269277.
- Santangelo, M.; Marchesini, I.; Bucci, F.; Cardinali, M.; Fiorucci, F.; Guzzetti, F. An approach to reduce mapping errors in the production of landslide inventory maps. Nat. Hazards Earth Syst. Sci. 2015, 15, 2111–2126. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Menna, F. Multi-temporal analysis of landscapes and urban areas. ISPRS 2012, XXXIX-B4, 85–90. [Google Scholar] [CrossRef]
- Pulighe, G.; Fava, F. DEM extraction from archive aerial photos: Accuracy assessment in areas of complex topography. Eur. J. Remote Sens. 2013, 46, 363–378. [Google Scholar] [CrossRef]
- Pontius, R.G.; Thontteh, O.; Chen, H. Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 2008, 15, 111–142. [Google Scholar] [CrossRef]
Dataset Name | 400g8 | 800g8 | 1600g8 | 2400g8 | 400g16 | 800g16 | 1600g16 | 2400g16 |
---|---|---|---|---|---|---|---|---|
Scanned images | ||||||||
Resolution [dpi] | 400 | 800 | 1600 | 2400 | 400 | 800 | 1600 | 2400 |
Color depth [bit] | 8 | 8 | 8 | 8 | 16 | 16 | 16 | 16 |
Pixel size [μm] | 56 | 28 | 14 | 9 | 56 | 28 | 14 | 9 |
Approx. GSD [m] | 1.91 | 0.95 | 0.48 | 0.32 | 1.91 | 0.95 | 0.48 | 0.32 |
Sparse point cloud | ||||||||
Tie points [thousands] | 62.1 | 79.9 | 75.4 | 66.6 | 62.4 | 79.7 | 75.4 | 66.8 |
BBA P.E. [px] | 0.32 | 0.459 | 0.71 | 0.981 | 0.319 | 0.469 | 0.725 | 0.981 |
BBA & GCP, P.E. [px] | 0.363 | 0.512 | 0.683 | 0.949 | 0.362 | 0.537 | 0.789 | 0.948 |
BBA & GCP, P.E. [m] | 0.69 | 0.49 | 0.33 | 0.3 | 0.69 | 0.51 | 0.38 | 0.3 |
Dense point cloud | ||||||||
Mean density [p/m] | 0.33 | 1.33 | 5.31 | 11.74 | 0.33 | 1.33 | 5.3 | 11.77 |
DSM | ||||||||
DSM Resolution [m] | 2 | 1 | 0.5 | 0.35 | 2 | 1 | 0.5 | 0.35 |
Computation time | ||||||||
Tapioca [min] | 6 | 21 | 30 | 40 | 6 | 22 | 28 | 40 |
Malt [min] | 23 | 87 | 449 | 1294 | 19 | 84 | 430 | 1175 |
Internal coherence | ||||||||
3D MAE [m] | 0.27 | 0.11 | 0.20 | 0.27 | 0.36 | 0.16 | 0.23 | 0.27 |
3D RMSE [m] | 0.50 | 0.16 | 0.28 | 0.40 | 0.59 | 0.20 | 0.40 | 0.40 |
Model validation | ||||||||
Mean [m] | −0.81 | −0.2 | −1.08 | −0.89 | −1.01 | −0.21 | −1.18 | −0.94 |
Median [m] | −0.48 | −0.36 | −0.92 | −0.77 | −0.48 | −0.36 | −0.92 | −0.77 |
Standard dev. [m] | 2.51 | 2.11 | 1.66 | 1.79 | 2.65 | 1.97 | 1.7 | 1.85 |
H-MAE [m] | 1.96 | 1.66 | 1.52 | 1.54 | 2.06 | 1.54 | 1.6 | 1.58 |
H-RMSE [m] | 2.64 | 2.11 | 1.98 | 2 | 2.84 | 1.97 | 2.07 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seccaroni, S.; Santangelo, M.; Marchesini, I.; Mondini, A.C.; Cardinali, M. High Resolution Historical Topography: Getting More from Archival Aerial Photographs. Proceedings 2018, 2, 347. https://doi.org/10.3390/ecrs-2-05160
Seccaroni S, Santangelo M, Marchesini I, Mondini AC, Cardinali M. High Resolution Historical Topography: Getting More from Archival Aerial Photographs. Proceedings. 2018; 2(7):347. https://doi.org/10.3390/ecrs-2-05160
Chicago/Turabian StyleSeccaroni, Simone, Michele Santangelo, Ivan Marchesini, Alessandro C. Mondini, and Mauro Cardinali. 2018. "High Resolution Historical Topography: Getting More from Archival Aerial Photographs" Proceedings 2, no. 7: 347. https://doi.org/10.3390/ecrs-2-05160
APA StyleSeccaroni, S., Santangelo, M., Marchesini, I., Mondini, A. C., & Cardinali, M. (2018). High Resolution Historical Topography: Getting More from Archival Aerial Photographs. Proceedings, 2(7), 347. https://doi.org/10.3390/ecrs-2-05160