#
Performance Analysis of Single Glazed Solar PVT Air Collector in the Climatic Condition of NE India^{ †}

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

- ⮚
- Heat transfer process is one dimensional.
- ⮚
- The heat capacity of PVT collector system is negligible.
- ⮚
- The system is in quasi-steady state.
- ⮚
- The ohmic and recombination losses in the solar cell are negligible.

#### 2.1. Energy Analysis

#### 2.2. Exergy Analysis

## 3. Model Analysis

#### 3.1. Physical Model of PVT System

^{2}. Area of the air duct is considered to be 0.54 m × 1.12 m and an air gap of 0.005 m is assumed between the tedlar and absorber plate. Various layer of the PVT system as shown in Figure 1 are, single glass cover (glazing), module of mono-crystalline silicon solar cell, tedlar, absorber plate, insulation. Details of the thermal and optical properties of the PVT system are depicted in Table 1 [24,25,26].

#### 3.2. Location of the Study

^{2}and 33.4 °C, respectively. Further, considered air properties for the evaluation of the performance is tabulated in Table 2.

## 4. Analysis

^{2}, PV panel are made of monocrystalline silicon solar cell, and air is forced to pass through the absorber plate and the tedlar. The values of the PV cell temperature $\left({T}_{c}\right)$, the back surface temperature of PV module $\left({T}_{bs}\right)$, the outlet fluid temperature of the collector $\left({T}_{fo}\right)$, the useful thermal heat gain $\left({Q}_{u}\right)$, the temperature dependent electrical efficiency $\left(\eta \right)$, and the exergy efficiency $\left({\eta}_{ex}\right)$ of the hybrid PVT air collector are obtained by inserting the climatic data and design data in Equations (1)–(13). Detail steps of the process are as follows:

- (i)
- (ii)
- The PV cell temperature $\left({T}_{c}\right)$ is obtained by inserting the climatic data and the back surface temperature of PV cell in Equation (1).
- (iii)
- The magnitude of the useful heat gain $\left({Q}_{u}\right)$ is obtained by inserting the inlet fluid temperature $\left({T}_{fi}\right)$ and the climatic data in Equation (4).
- (iv)
- The temperature dependent electrical efficiency $\left({\eta}_{o}\right)$ is obtained by using the climatic data and the conversion efficiency of the PV cell ($\eta $) in Equation (5).
- (v)
- The instantaneous thermal efficiency $\left({\eta}_{i}\right)$ is obtained by using the useful heat gain $\left({Q}_{u}\right)$, the design data and the climatic data in Equation (7).
- (vi)
- The exergy inlet $\left(E{x}_{in}\right)$ is obtained by using the climatic data in Equation (11).
- (vii)
- The exergy outlet $\left(E{x}_{out}\right)$ is obtained by using the climatic data and the overall useful heat gain $\left({Q}_{u}\right)$ and electrical exergy $\left(E{x}_{electric}\right)$ in Equation (12).
- (viii)
- Finally the exergy efficiency is obtained by using the exergy inlet $\left(E{x}_{in}\right)$ and exergy outlet $\left(E{x}_{out}\right)$ in Equation (13).

## 5. Results and Discussions

## 6. Conclusions

## Acknowledgments

## Abbreviations

A | Area of module (m^{2}) |

w | Width of module (m) |

C_{f} | Specific heat of air (J/kg K) |

FR | Heat removal factor |

h_{p1} | Penalty factor due to tedlar of PV module |

h_{p2} | Penalty factor due to glass of PV module |

h_{T} | Convective heat transfer coefficient from the tedlar back surface to the working fluid, i.e., air (W/m^{2}K) |

L | Length of module (m) |

L_{T} | Thermodynamic loss (kW·h) |

m_{f} | Air mass flow rate (kg/s) |

Q_{u} | Useful heat (W) |

T | Temperature (K) |

U | Overall heat transfer coefficient (W/m^{2} K) |

U_{I} | Estimation of internal uncertainty |

U_{T} | Convective heat transfer coefficient through the tedlar (W/m^{2}K) |

U_{b} | Overall heat transfer coefficient from flowing fluid to ambient (W/m^{2} K) |

U_{tc,a} | Overall heat transfer coefficient between solar cell to ambient through glass cover (W/m^{2} K) |

Greek letters | |

$\alpha $ | Absorptivity |

${\left(\alpha \tau \right)}_{eff}$ | Product of effective absorptivity and transmittivity |

$\beta $ | Packing factor |

${\beta}_{0}$ | Temperature coefficient of efficiency (1/K) |

$\tau $ | Transmittivity |

${\eta}_{0}$ | Efficiency of solar cell at standard test condition (%) |

$\eta $ | Temperature dependent efficiency (%) |

$\rho $ | Density (kg/m^{3}) |

Subscripts | |

a | Ambient |

bs | Base |

c | Solar cell |

eff | Effective |

f | Fluid (air) |

fi | Inlet fluid |

fo | Outgoing fluid |

g | Glass |

s | Sun |

T | Tedlar |

tc | Tedlar to cell |

## References

- Sahota, L.; Tiwari, G.N. Review on series connected photovoltaic thermal (PVT) systems: Analytical and experimental studies. Sol. Energy
**2017**, 150, 96–127. [Google Scholar] [CrossRef] - Bhargava, A.K.; Garg, H.P.; Agrawal, R.K. Study of a hybrid solar system-solar air heater combined with solar cells. Energy Convers. Manag.
**1991**, 31, 471–479. [Google Scholar] [CrossRef] - Sopian, K.; Yigit, K.S.; Liu, H.T.; Kakaç, S.; Veziroglu, T.N. Performance analysis of photovoltaic thermal air heaters. Energy Convers. Manag.
**1996**, 37, 1657–1670. [Google Scholar] [CrossRef] - Garg, H.P.; Adhikari, R.S. Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: Steady-state simulation. Renew. Energy
**1997**, 11, 363–385. [Google Scholar] [CrossRef] - Hegazy, A.A. Comparative study of the performances of four photovoltaic/thermal solar air collectors. Energy Convers. Manag.
**2000**, 41, 861–881. [Google Scholar] [CrossRef] - Othman, M.Y.H.; Ruslan, H.; Sopian, K.; Jin, G.L. Performance study of photovoltaic-thermal (PV/T) solar collector with del-grooved absorber plate. Sains Malays.
**2009**, 38, 537–541. [Google Scholar] - Kim, J.H.; Kim, J.T. Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors. Int. J. Photoenergy
**2012**. [Google Scholar] [CrossRef] - Tonui, J.K.; Tripanagnostopoulos, Y. Air-cooled PVT solar collectors with low-cost performance improvements. Sol. Energy
**2007**, 81, 498–511. [Google Scholar] [CrossRef] - Raman, V.; Tiwari, G.N. Life cycle cost analysis of HPVT air collector under different Indian climatic conditions. Energy Policy
**2008**, 36, 603–611. [Google Scholar] [CrossRef] - Dubey, S.; Sandhu, G.S.; Tiwari, G.N. Analytical expression for electrical efficiency of PV/T hybrid air collector. Appl. Energy
**2009**, 86, 697–705. [Google Scholar] [CrossRef] - Farshchimonfared, M.; Bilbao, J.I.; Sproul, A.B. Full optimisation and sensitivity analysis of a photovoltaic—Thermal (PV/T) air system linked to a typical residential building. Sol. Energy
**2016**, 136, 15–22. [Google Scholar] [CrossRef] - Sarhaddi, F.; Farahat, S.; Ajam, H.; Behzadmehr, A.; Adeli, M.M. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl. Energy
**2010**, 87, 2328–2339. [Google Scholar] [CrossRef] - Agrawal, S.; Tiwari, A. Experimental validation of micro-channel solar cell thermal tile. Sol. Energy
**2011**, 85, 3046–3056. [Google Scholar] [CrossRef] - Hussain, F.; Othman, M.Y.H.; Yatim, B.; Ruslan, H.; Sopian, K.; Anuar, Z.; Khairuddin, S. An improved design of photovoltaic/thermal solar collector. Sol. Energy
**2015**, 122, 885–891. [Google Scholar] [CrossRef] - Khelifa, A.; Touafek, K.; BenMoussa, H.; Tabet, I.; Bencheikh, H.; Haloui, H. Analysis of a hybrid solar collector photovoltaic thermal (PVT). Energy Procedia
**2015**, 74, 835–843. [Google Scholar] [CrossRef] - Yang, T.; Athienitis, A.K. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system. Appl. Energy
**2015**, 159, 70–79. [Google Scholar] [CrossRef] - Pauly, L.; Rekha, L.; Vazhappilly, C.V.; Melvinraj, C.R. Numerical Simulation for Solar Hybrid Photovoltaic Thermal Air Collector. Procedia Technol.
**2016**, 24, 513–522. [Google Scholar] - Mojumder, J.C.; Chong, W.T.; Ong, H.W.; Leong, K.Y.; Mamoon, A.A. An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build.
**2016**, 130, 272–285. [Google Scholar] [CrossRef] - Dimri, N.; Tiwari, A.; Tiwari, G.N. Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Convers. Manag.
**2017**, 146, 68–77. [Google Scholar] [CrossRef] - Ooshaksaraei, P.; Sopian, K.; Zaidi, S.H.; Zulkifli, R. Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells. Renew. Energy
**2017**, 102, 279–293. [Google Scholar] [CrossRef] - Slimani, M.; Amirat, M.; Kurucz, I.; Bahria, S.; Hamidat, A.; Chaouch, W.B. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Convers. Manag.
**2017**, 133, 458–476. [Google Scholar] [CrossRef] - Kamthania, D.; Nayak, S.; Tiwari, G.N. Energy and exergy analysis of a hybrid photovoltaic thermal double pass air collector. Appl. Sol. Energy
**2011**, 47, 199–206. [Google Scholar] [CrossRef] - Agrawal, S.; Tiwari, A. Overall energy, exergy, and carbon credit analysis by different types of hybrid photovoltaic thermal air collectors. Energy Convers. Manag.
**2013**, 65, 628–636. [Google Scholar] [CrossRef] - Dubey, S.; Tiwari, G.N. Energy and exergy analysis of different configuration of flat plate collectors connected in series. Int. J. Energy Res.
**2009**, 32, 1362–1372. [Google Scholar] [CrossRef] - Agrawal, S.; Tiwari, G.N. Exergoeconomic analysis of glazed hybrid photovoltaic thermal module air collector. Sol. Energy
**2012**, 86, 2826–2838. [Google Scholar] [CrossRef] - Agrawal, S.; Tiwari, A. Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module. Sol. Energy
**2011**, 85, 356–370. [Google Scholar] [CrossRef] - Bahrehmand, D.; Ameri, M.; Gholampour, M. Energy and exergy analysis of different solar air collector systems with forced convection. Renew. Energy
**2015**, 83, 1119–1130. [Google Scholar] [CrossRef]

**Figure 5.**Variation of PV cell conversion efficiency of PVT system with time during the day, 15 May 2017.

Parameters | Value | Parameters | Value |
---|---|---|---|

${A}_{c}$ (m^{2}) | 0.61 | ${h}_{p1}$ | 0.375 |

w (m) | 0.54 | ${h}_{p2}$ | 0.965 |

${C}_{f}$ (J/kgK) | 1012 | ${U}_{T}$ (W/mK) | 66 |

${T}_{0}$ (°C) | 25 | ${U}_{t}$ (W/mK) | 11.4 |

${\alpha}_{c}$ | 0.9 | ${U}_{tT}$ (W/mK) | 9.72 |

${\beta}_{o}$ | 0.0045 | ${U}_{L}$ (W/mK) | 5.62 |

$\beta $ | 1 | ${U}_{tc,a}$ (W/mK) | 11.4 |

${\eta}_{o}$ | 0.15 | ${\tau}_{c}$ | 0.95 |

${\tau}_{g}$ | 0.95 | ${\tau}_{g}$ | 0.95 |

${m}_{f}$ (kg/s) | 0.0108 | ${\alpha}_{T}$ | 0.5 |

${K}_{g}$ (W/mK) | 1.1 | F_{R} | 0.90 |

${L}_{g}$ (m) | 0.003 | ${h}_{T}$ (W/mK) | 10.3 |

${U}_{tcf}$ (W/mK) | 4.03 | L (m) | 1.12 |

${U}_{fa}$ (W/mK) | 2.94 | ${U}_{L}$ (W/mK) | 9.83 |

Parameters | Value |
---|---|

${T}_{0}$ (°C) | 25 |

${h}_{T}$ (W/m·K) | 10.3 |

T_{s} (K) | 5778 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Das, B.; Rezaie, B.; Jha, P.; Gupta, R.
Performance Analysis of Single Glazed Solar PVT Air Collector in the Climatic Condition of NE India. *Proceedings* **2018**, *2*, 171.
https://doi.org/10.3390/ecea-4-05021

**AMA Style**

Das B, Rezaie B, Jha P, Gupta R.
Performance Analysis of Single Glazed Solar PVT Air Collector in the Climatic Condition of NE India. *Proceedings*. 2018; 2(4):171.
https://doi.org/10.3390/ecea-4-05021

**Chicago/Turabian Style**

Das, Biplab, Behnaz Rezaie, Prabhakar Jha, and Rajat Gupta.
2018. "Performance Analysis of Single Glazed Solar PVT Air Collector in the Climatic Condition of NE India" *Proceedings* 2, no. 4: 171.
https://doi.org/10.3390/ecea-4-05021