Analysis of New Strategies to Reach Nearly Zero Energy Buildings (nZEBs) †
Abstract
:1. Introduction
2. Literature Review about nZEBs
3. Overview of the Literature about MPC
4. Discussion about MPC as An Useful Tool
5. Conclusions and Future Works
References
- European Union. Directive 2010/31/EU; European Union: Brussels, Belgium, 2010. [Google Scholar]
- European Union. Directive 2002/91/EC; European Union: Brussels, Belgium, 2003. [Google Scholar]
- European Union. Directive 2012/27/EU; European Union: Brussels, Belgium, 2012. [Google Scholar]
- European Union (EU). 2030 Framework 2013/2135(INI); European Union: Brussels, Belgium, 2014. [Google Scholar]
- Loukaidou, K.; Michopoulos, A.; Zachariadis, T. Nearly-Zero Energy Buildings: Cost-Optimal Analysis of Building Envelope Characteristics. Procedia Environ. Sci. 2017, 38, 20–27. [Google Scholar] [CrossRef]
- Aste, N.; Adhikari, R.S.; Del Pero, C.; Leonforte, F. Multi-functional Integrated System for Energy Retrofit of Existing Buildings: A Solution Towards nZEB Standards. Energy Procedia 2017, 105, 2811–2817. [Google Scholar] [CrossRef]
- Barthelmes, V.M.; Becchio, C.; Bottero, M.C.; Corgnati, S.P. The Influence of Energy Targets and Economic Concerns in Design Strategies for a Residential Nearly-Zero Energy Building. Buildings 2014, 4, 937–962. [Google Scholar] [CrossRef]
- Murano, G.; Ballarini, I.; Dirutigliano, D.; Primo, E.; Corrado, V. The significant imbalance of nZEB energy need for heating and cooling in Italian climatic zones. Energy Procedia 2017, 126, 258–265. [Google Scholar] [CrossRef]
- Cornaro, C.; Pierro, M.; Puggioni, V.A.; Roncarati, D. Outdoor Characterization of Phase Change Materials and Assessment of Their Energy Saving Potential to Reach NZEB. Buildings 2017, 55, 7. [Google Scholar] [CrossRef]
- Cornaro, C.; Basciano, G.; Puggioni, V.A.; Pierro, M. Energy Saving Assessment of Semi-Transparent Photovoltaic Modules Integrated into NZEB. Buildings 2017, 9, 7. [Google Scholar] [CrossRef]
- Kurnitski, J.; Saari, A.; Kalamees, T.; Vuolle, M.; Niemelä, J.; Tark, T. Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy Build. 2011, 43, 3279–3288. [Google Scholar] [CrossRef]
- Kang, H.J. Development of an Nearly Zero Emission Building (nZEB) Life Cycle Cost Assessment Tool for Fast Decision Making in the Early Design Phase. Energies 2017, 59, 10. [Google Scholar] [CrossRef]
- Karlessi, T.; Kampelis, N.; Kolokotsa, D.; Santamouris, M.; Standardi, L.; Isidori, D.; Cristalli, C. The concept of smart and NZEB buildings and the integrated design approach. Procedia Eng. 2017, 180, 1316–1325. [Google Scholar] [CrossRef]
- Péan, T.Q.; Ortiz, J.; Salom, J. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB. Buildings 2017, 37, 7. [Google Scholar] [CrossRef]
- Guillén-Lambea, S.; Rodríguez-Soria, B.; Marín, J.M. Comfort settings and energy demand for residential nZEB in warm climates. Appl. Energy 2017, 202, 471–486. [Google Scholar] [CrossRef]
- Keltsch, M.; Lang, W.; Auer, T. Nearly Zero Energy Standard for Non-Residential Buildings with high Energy Demands—An Empirical Case Study Using the State-Related Properties of BAVARIA. Buildings 2017, 25, 7. [Google Scholar] [CrossRef]
- Cellura, M.; Ciulla, G.; Guarino, F.; Longo, S. Redesign of a Rural Building in a Heritage Site in Italy: Towards the Net Zero Energy Target. Buildings 2017, 68, 7. [Google Scholar] [CrossRef]
- Monteiro, J.; Castro, O. Application of the nZEB methodology in the retrofitting of a typical Portuguese dwelling from the 50’s. In Proceedings of the 11th REHVA World Congress (CLIMA 2013), Prague, Czech Republic, 16–19 June 2013. [Google Scholar]
- Becchio, C.; Dabbene, P.; Fabrizio, E.; Monetti, V.; Filippi, M. Cost optimality assessment of a single family house: Building and technical systems solutions for the nZEB target. Energy Build. 2015, 90, 173–187. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Aste, N.; del Pero, C.; Manfren, M. Net Zero Energy Buildings: Expense or Investment? Energy Procedia 2012, 14, 1331–1336. [Google Scholar] [CrossRef]
- García, C.E.; Prett, D.M.; Morari, M. Model predictive control: Theory and practice—A survey. Automatica 1989, 25, 335–348. [Google Scholar] [CrossRef]
- Cho, S.H.; Zaheer-uddin, M. Predictive control of intermittently operated radiant floor heating systems. Energy Convers. Manag. 2003, 44, 1333–1342. [Google Scholar] [CrossRef]
- Roberts, S. Altering existing buildings in the UK. Energy Policy 2008, 36, 4482–4486. [Google Scholar] [CrossRef]
- Kneifel, J. Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy Build. 2010, 42, 333–340. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2011, 45, 15–27. [Google Scholar] [CrossRef]
- Široký, J.; Oldewurtel, F.; Cigler, J.; Prívara, S. Experimental analysis of model predictive control for an energy efficient building heating system. Appl. Energy 2011, 88, 3079–3087. [Google Scholar] [CrossRef]
- Cigler, J.; Gyalistras, D.; Široký, J.; Tiet, V.-N.; Ferkla, L. Beyond theory: The challenge of implementing Model Predictive Control in buildings. In Proceedings of the 11th REHVA World Congress (CLIMA 2013), Prague, Czech Republic, 16–19 June 2013. [Google Scholar]
- Fabietti, L. Control of HVAC Systems via Explicit and Implicit MPC: An Experimental Case Study. Master’s Degree, Project of the KTH Electrical Engineering - No. XE-EE-RT 2014:006. April 2014. [Google Scholar]
- Xiwang, L.; Wen, J. Review of building energy modeling for control and operation. Renew. Sustain. Energy Rev. 2014, 37, 517–537. [Google Scholar]
- De Coninck, R.; Helsen, L. Practical implementation and evaluation of model predictive control for an office building in Brussels. Energy Build. 2016, 111, 290–298. [Google Scholar] [CrossRef]
- Ruparathna, R.; Hewage, K.; Sadiq, R. Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings. Renew. Sustain. Energy Rev. 2015, 53, 1032–1045. [Google Scholar] [CrossRef]
- Harish, V.S.K.V.; Kumar, A. A review on modeling and simulation of building energy systems. Renew. Sustain. Energy Rev. 2015, 56, 1272–1292. [Google Scholar] [CrossRef]
- Chandel, S.S.; Sharma, A.; Marwaha, B.M. Review of energy efficiency initiatives and regulations for residential buildings in India. Renew. Sustain. Energy Rev. 2016, 54, 1443–1458. [Google Scholar] [CrossRef]
- Santos-Herrero, J.M.; Lopez-Guede, J.M.; Flores, I.; Sala, J.M. An ongoing review on building energy efficiency improvement systems. In Proceedings of the IV European Conference on Renewable Energy Systems, Istanbul, Turkey, 28–31 August 2016. [Google Scholar]
- Carrascal, E.; Garrido, I.; Garrido, A.J.; Sala, J.M. Optimization of the Heating System Use in Aged Public Buildings via Model Predictive Control. Energies 2016, 9, 251. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort. Energy Build. 2015, 111, 131–144. [Google Scholar] [CrossRef]
- Hu, Q.; Oldewurtel, F.; Balandat, M.; Vrettos, E.; Zhou, D.; Tomlin, C.J. Building Model Identification during Regular Operation–Empirical Results and Challenges. In Proceedings of the IEEE American Control Conference, Boston, MA, USA, 6–8 July 2016. [Google Scholar]
- Sturzenegger, D.; Gyalistras, D.; Morari, M.; Smith, R.S. Model Predictive Climate Control of a Swiss Office Building: Implementation, Results, and Cost-Benefit Analysis. Contr. Syst. Technol. 2015, 24, 1. [Google Scholar] [CrossRef]
- Vaccarini, M.; Giretti, A.; Tolve, L.C.; Casals, M.M. Model predictive energy control of ventilation for underground stations. Energy Build. 2016, 116, 326–340. [Google Scholar] [CrossRef]
- Reena, M.; Mathew, A.T.; Jacob, L. Energy Efficient Wireless Networked Building Automation System Controlled by Real Occupancy. In Proceedings of the TENCON 2015 - IEEE Region 10 Conference, Macau, China, 1–4 November 2015. [Google Scholar]
- Oldewurtel, F.; Sturzenegger, D.; Morari, M. Importance of occupancy information for building climate control. Appl. Energy 2012, 101, 521–532. [Google Scholar]
- Marvuglia, A.; Messineo, A.; Nicolosi, G. Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building. Build. Environ. 2014, 72, 287–299. [Google Scholar] [CrossRef]
- Collotta, M.; Messineo, A.; Nicolosi, G.; Pau, G. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input. Energies 2014, 7, 4727–4756. [Google Scholar] [CrossRef]
- Dragomir, O.E.; Dragomir, F.; Stefan, V.; Minca, E. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources. Energies 2015, 8, 13047–13061. [Google Scholar] [CrossRef]
- Ghadi, Y.Y.; Rasul, M.G.; Khan, M.M.K. Design and development of advanced fuzzy logic controllers in smart buildings for institutional buildings in subtropical Queensland. Renew. Sustain. Energy Rev. 2015, 54, 738–744. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Herrero, J.M.; Lopez-Guede, J.M.; Flores, I. Analysis of New Strategies to Reach Nearly Zero Energy Buildings (nZEBs). Proceedings 2018, 2, 1437. https://doi.org/10.3390/proceedings2231437
Santos-Herrero JM, Lopez-Guede JM, Flores I. Analysis of New Strategies to Reach Nearly Zero Energy Buildings (nZEBs). Proceedings. 2018; 2(23):1437. https://doi.org/10.3390/proceedings2231437
Chicago/Turabian StyleSantos-Herrero, Jose Maria, Jose Manuel Lopez-Guede, and Ivan Flores. 2018. "Analysis of New Strategies to Reach Nearly Zero Energy Buildings (nZEBs)" Proceedings 2, no. 23: 1437. https://doi.org/10.3390/proceedings2231437
APA StyleSantos-Herrero, J. M., Lopez-Guede, J. M., & Flores, I. (2018). Analysis of New Strategies to Reach Nearly Zero Energy Buildings (nZEBs). Proceedings, 2(23), 1437. https://doi.org/10.3390/proceedings2231437