Effective Sensor Properties of a Novel Co-Resonant Cantilever Sensor †
Abstract
:1. Introduction
2. Modelling of a Co-Resonantly Coupled Sensor
3. Effective Sensor Properties
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Körner, J.; Reiche, C.F.; Büchner, B.; Gerlach, G.; Mühl, T. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor. Beilstein J. Nanotechnol. 2016, 7, 1033. [Google Scholar] [CrossRef] [PubMed]
- Körner, J.; Reiche, C.F.; Ghunaim, R.; Fuge, R.; Hampel, S.; Büchner, B.; Mühl, T. Magnetic properties of individual Co2FeGa Heusler nanoparticles studied at room temperature by a highly sensitive co-resonant cantilever sensor. Sci. Rep. 2017, 7, 8881. [Google Scholar] [CrossRef] [PubMed]
- Reiche, C.F.; Körner, J.; Büchner, B.; Mühl, T. Bidirectional scanning force microscopy probes with co-resonant sensitivity enhancement. In Proceedings of the IEEE 15th International Conference on Nanotechnology, Rome, Italy, 27–30 July 2015; p. 1222. [Google Scholar] [CrossRef]
- Baller, M.K.; Lang, H.P.; Fritz, J.; Gerber, C.; Gimzewski, J.K.; Drechsler, U.; Rothuizen, H.; Despont, M.; Vettiger, P.; Battiston, F.M.; Ramseyer, J.P.; Fornardo, P.; Meyer, E.; Güntherodt, H.J. A cantilever array-based artificial nose. Ultramicroscopy 2000, 82, 1. [Google Scholar] [CrossRef]
- Martínez-Martín, D.; Fläschner, G.; Gaub, B.; Martin, S.; Newton, R.; Beerli, C.; Mercer, J.; Gerber, C.; Müller, D.J. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 2017, 550, 500. [Google Scholar] [CrossRef] [PubMed]
- Reiche, C.F.; Körner, J.; Büchner, B.; Mühl, T. Introduction of a co-resonant detection concept for mechanical oscillation-based sensors. Nanotechnology 2015, 26, 335501. [Google Scholar] [CrossRef] [PubMed]
- Köerner, J. Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor. Beilstein J. Nanotechnol. 2018, 9, 2546–2560. [Google Scholar] [CrossRef] [PubMed]
- Rast, S.; Wattinger, C.; Gysin, U.; Meyer, E. Dynamics of damped cantilevers. Sci. Instrum. 2000, 71, 2772. [Google Scholar] [CrossRef]
- Giessibl, F.J.; Pielmeier, F.; Eguchi, T.; An, T.; Hasegawa, Y. Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 2011, 84, 125409. [Google Scholar] [CrossRef]
- Körner, J.; Reiche, C.F.; Büchner, B.; Mühl, T.; Gerlach, G. Employing electro-mechanical analogies for co-resonantly coupled cantilever sensors. J. Sens. Sens. Syst. 2016, 5, 242. [Google Scholar] [CrossRef]
- Ilic, B.; Yang, Y.; Craighead, H.G. Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 2004, 85, 2604. [Google Scholar] [CrossRef]
Parameter | Microcantilever (1) | Nanocantilever (2) |
---|---|---|
Eigenfrequency f | 100 kHz | variable |
Spring constant k | 1 N/m | 0.001 N/m |
Quality factor Q | 10,000 | 500 |
Right Peak (a) | Left Peak (b) | |
Resonance frequency f | 97.14 kHz | 100.88 kHz |
Effective spring constant ke f f | 0.0013 | 0.0042 |
Effective quality factor Qe f f | 630 | 1940 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Körner, J. Effective Sensor Properties of a Novel Co-Resonant Cantilever Sensor. Proceedings 2018, 2, 974. https://doi.org/10.3390/proceedings2130974
Körner J. Effective Sensor Properties of a Novel Co-Resonant Cantilever Sensor. Proceedings. 2018; 2(13):974. https://doi.org/10.3390/proceedings2130974
Chicago/Turabian StyleKörner, Julia. 2018. "Effective Sensor Properties of a Novel Co-Resonant Cantilever Sensor" Proceedings 2, no. 13: 974. https://doi.org/10.3390/proceedings2130974
APA StyleKörner, J. (2018). Effective Sensor Properties of a Novel Co-Resonant Cantilever Sensor. Proceedings, 2(13), 974. https://doi.org/10.3390/proceedings2130974