Next Article in Journal
Effective Sensor Properties of a Novel Co-Resonant Cantilever Sensor
Previous Article in Journal
Inkjet 3D Printed Micropot with Integrated Cantilever-Like Force Sensor for Growing Plant Biological Potential Measurement
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Proceeding Paper

Room Temperature Humidity Sensor Based on Single β-Ga2O3 Nanowires †

1
Department of Electronic and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain
2
Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
3
Institut de Microelectrònica de Barcelona-Centre Nacional de Microelectrònica, Consejo Superior de Investigaciones Científicas (CSIC), 08193 Bellaterra, Spain
4
Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
*
Author to whom correspondence should be addressed.
Presented at the Eurosensors 2018 Conference, Graz, Austria, 9–12 September 2018.
Proceedings 2018, 2(13), 958; https://doi.org/10.3390/proceedings2130958
Published: 8 January 2019
(This article belongs to the Proceedings of EUROSENSORS 2018)

1. Summary

Monoclinic gallium oxide (β-Ga2O3) nanowires were fabricated via a metal-assisted vapor-liquid-solid process using chemical vapor deposition techniques and carbothermal reduction. The fabricated nanowires were structurally and optically characterized, revealing a high crystalline nature, with strong photoluminescent emission and a bandgap of 4.2 eV. Using focused electron beam techniques, nanowires were individually contacted for their use as gas sensors. The fabricated devices were tested against different concentrations of gases up to temperatures of 200 °C. Fast, stable and reproducible responses were measured towards water vapor at room temperature, with a power consumption in the nW range. The reaction promoting this response is strongly related to pre-adsorbed oxygen, a tight requirement for the water vapor sensing.

2. Motivation and Results

In the early nineties β-Ga2O3 appeared as an interesting material for high-temperature oxygen and reducing gases sensors in form of thin films [1]. As gallium oxide requires temperature above 600 °C to sense oxygen, several alternative strategies were explored to lower this threshold: surface functionalization with metal-particles, dopants or the use of morphologies with higher surface-to- volume ratio, like nanowires. The β-Ga2O3 nanostructure-based sensors have shown enhanced sensing performance when compared to thin film gas sensors, being able to sense reducing gases and volatile organic compounds at considerably low temperatures or even at room temperature with less power consumption than their thin film counterparts [2].
In this study, we present single β-Ga2O3 nanowire-based sensors, Figure 1a, and their behavior when exposed to different concentrations of water vapor at room temperature, Figure 1b. The response measured increased with concentration and was always fast, between 7 and 2 min to reach a steady state when exposed from 40 to 80% of relative humidity, respectively. The maximum response lies around 97%. With increasing temperature, the response decreased, disappearing at ~150 °C. This occurrence seems to indicate that the sensing process is due to physisorption.
To study possible reaction paths, tests were repeated under nitrogen ambient, revealing that water vapor promotes the oxygen desorption from the β-Ga2O3 nanowires and, therefore, the presence of oxygen at the surface or the surrounding of the sensing material is necessary for effective sensing. The oxygen adsorption on the surface of the nanowires was very fast, around 1 min for varying oxygen concentration.

References

  1. Fleischer, M.; Meixner, H. Gallium oxide thin films: A new material for high-temperature oxygen sensors. Sens. Act. B Chem. 1991, 4, 437–441. [Google Scholar] [CrossRef]
  2. Park, S.; Kim, H.; Jin, C.; Lee, C. Synthesis, structure, and room-temperature gas sensing of multiple- networked Pd-doped Ga2O3 nanowires. J. Korean Phys. Soc. 2012, 60, 1560–1564. [Google Scholar] [CrossRef]
Figure 1. (a) Gallium oxide nanowires grown via gold-assisted vapor-liquid-solid process using chemical vapor deposition techniques and carbothermal reduction at 800 °C; (b) Gallium oxide nanowire-based gas sensor’s resistance evolution towards varying concentrations of relative humidity in synthetic air at room temperature.
Figure 1. (a) Gallium oxide nanowires grown via gold-assisted vapor-liquid-solid process using chemical vapor deposition techniques and carbothermal reduction at 800 °C; (b) Gallium oxide nanowire-based gas sensor’s resistance evolution towards varying concentrations of relative humidity in synthetic air at room temperature.
Proceedings 02 00958 g001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Domènech-Gil, G.; Peiró, I.; López-Aymerich, E.; Moreno, M.; Pellegrino, P.; Gràcia, I.; Cané, C.; Barth, S.; Romano-Rodríguez, A. Room Temperature Humidity Sensor Based on Single β-Ga2O3 Nanowires. Proceedings 2018, 2, 958. https://doi.org/10.3390/proceedings2130958

AMA Style

Domènech-Gil G, Peiró I, López-Aymerich E, Moreno M, Pellegrino P, Gràcia I, Cané C, Barth S, Romano-Rodríguez A. Room Temperature Humidity Sensor Based on Single β-Ga2O3 Nanowires. Proceedings. 2018; 2(13):958. https://doi.org/10.3390/proceedings2130958

Chicago/Turabian Style

Domènech-Gil, Guillem, Irmina Peiró, Elena López-Aymerich, Mauricio Moreno, Paolo Pellegrino, Isabel Gràcia, Carles Cané, Sven Barth, and Albert Romano-Rodríguez. 2018. "Room Temperature Humidity Sensor Based on Single β-Ga2O3 Nanowires" Proceedings 2, no. 13: 958. https://doi.org/10.3390/proceedings2130958

APA Style

Domènech-Gil, G., Peiró, I., López-Aymerich, E., Moreno, M., Pellegrino, P., Gràcia, I., Cané, C., Barth, S., & Romano-Rodríguez, A. (2018). Room Temperature Humidity Sensor Based on Single β-Ga2O3 Nanowires. Proceedings, 2(13), 958. https://doi.org/10.3390/proceedings2130958

Article Metrics

Back to TopTop