Inkjet 3D Printed Micropot with Integrated Cantilever-Like Force Sensor for Growing Plant Biological Potential Measurement †
Abstract
:1. Introduction
2. Material and Method
2.1. Fabrication and Beam Characterisation
2.2. Image Analyze and Characterisation Set-up
3. Results
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Basu, P.; Pal, A. A new tool for analysis of root growth in the spatio-temporal continuum. New Phytol. 2012, 195, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants 2015, 4, 369–392. [Google Scholar] [CrossRef] [PubMed]
- Hida, H.; Ozoe, K.; Iguro, D.; Kanno, I.; Nogaguchi, M. Methods for physical characterization of growing plants roots. In Proceedings of the 21st international conference on miniaturized systems for chemistry and life science (MicroTAS), Gyeongju, Korea, 25–29 October 2015; pp. 185–186. [Google Scholar]
- Walczak, R.; Adamski, K.; Pokrzywnicka, A.; Kubicki, W. Inkjet 3D Printing-Studies on Applicability for Lab-on-a-chip Technique. Procedia Eng. Tom 2016, 168, 1362–1365. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K.; Kubicki, W. Inkjet 3D printed chip for capillary gel electrophoresis. Sens. Actuators B Chem. 2018, 261C, 474–480. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K.; Kubicki, W. Configurable on-Chip Gel Electrophoresis in Inkjet 3D Printed Microfluidic Modules. Proceedings 2017, 1, 520. [Google Scholar] [CrossRef]
- Adamski, K.; Adamski, J.; Dziuban, J.; Walczak, R. Inkjet 3D Printed Miniature Water Turbine Energy Harvester-Flow Meter for Distributed Measurement Systems. MDPI Proc. 2017, 1, 578. [Google Scholar]
- Walczak, R.; Adamski, K.; Lizanets, D. Inkjet 3D printed check microvalve. J. Micromech. Microeng. 2017, 27, 047002. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K. Inkjet 3D printing of microfluidic structures—On the selection of the printer towards printing your own microfluidic chips J. Micromech. Microeng. 2015, 25, 8. [Google Scholar] [CrossRef]
- Kawa, B.; Adamski, K.; Walczak, R.; Lizanets, D. Mechanical Characterization of Inkjet 3D Printed Microcantilevers. In Proceedings of the XV International Scientific Conference on Optoelectronic and Electronic Sensors COE, Warsaw, Poland, 17–20 Jun 2018. [Google Scholar]
- Lizanets, D.; Walczak, R. Cell detection and tracking in lab-on-a-chip devices by image processing. Opt. Appl. 2018. [Google Scholar] [CrossRef]
- Adamski, K.; Kawa, B.; Walczak, R. 3D Printed Flowmeter Based on Venturi Effect with Integrated Pressure Sensors, Eurosensors 2018. MDPI Proc. 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamski, K.; Kawa, B.; Walczak, R. Inkjet 3D Printed Micropot with Integrated Cantilever-Like Force Sensor for Growing Plant Biological Potential Measurement. Proceedings 2018, 2, 720. https://doi.org/10.3390/proceedings2130720
Adamski K, Kawa B, Walczak R. Inkjet 3D Printed Micropot with Integrated Cantilever-Like Force Sensor for Growing Plant Biological Potential Measurement. Proceedings. 2018; 2(13):720. https://doi.org/10.3390/proceedings2130720
Chicago/Turabian StyleAdamski, Krzysztof, Bartosz Kawa, and Rafał Walczak. 2018. "Inkjet 3D Printed Micropot with Integrated Cantilever-Like Force Sensor for Growing Plant Biological Potential Measurement" Proceedings 2, no. 13: 720. https://doi.org/10.3390/proceedings2130720
APA StyleAdamski, K., Kawa, B., & Walczak, R. (2018). Inkjet 3D Printed Micropot with Integrated Cantilever-Like Force Sensor for Growing Plant Biological Potential Measurement. Proceedings, 2(13), 720. https://doi.org/10.3390/proceedings2130720