A Gravure Printed Flexible Electrochemical Sensor for the Detection of Heavy Metal Compounds †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensor Fabrication
2.3. Experiment Setup
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Tang, L.; Zeng, G.M.; Shen, G.L.; Li, Y.P.; Zhang, Y.; Huang, D.L. Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ. Sci. Technol. 2018, 42, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Avuthu, S.G.; Wabeke, J.T.; Narakathu, B.B.; Maddipatla, D.; Arachchilage, J.S.; Obare, S.O.; Atashbar, M.Z. A screen printed phenanthroline based flexible electrochemical sensor for selective detection of toxic heavy metal ions. IEEE Sens. J. 2016, 16, 8678–8684. [Google Scholar] [CrossRef]
- Warsinke, A. Point of care testing of proteins. Anal. Bioanal. Chem. 2009, 393, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.C.; Wang, X.; Wang, L.; Song, H.; Zhang, H.; Huang, W.; Chen, P. 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl. Mater. Interfaces 2012, 4, 3129–3133. [Google Scholar] [CrossRef] [PubMed]
- Rios, A.; Zougagh, M.; Avila, M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal. Chim. Acta 2012, 740, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Narakathu, B.B.; Guo, W.; Obare, S.O.; Atashbar, M.Z. Novel approach for detection of toxic organophosphorus compounds. Sens. Actuators B Chem. 2011, 158, 69–74. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Lorenzelli, L.; Dahiya, R. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 2014, 15, 3164–3185. [Google Scholar] [CrossRef]
- Turkani, V.S.; Maddipatla, D.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. A carbon nanotube based NTC thermistor using additive print manufacturing processes. Sens. Actuators A Phys. 2018, 279, 1–9. [Google Scholar] [CrossRef]
- Maddipatla, D.; Narakathu, B.B.; Ali, M.M.; Chlaihawi, A.A.; Atashbar, M.Z. Development of a novel carbon nanotube based printed and flexible pressure sensor. In Proceedings of the IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Avuthu, S.G.R.; Wabeke, J.T.; Narakathu, B.B.; Maddipatla, D.; Eshkeiti, A.; Emamian, S.; Chlaihawi, A.A.; Joyce, M.; Obare, S.O.; Atashbar, M.Z. Development of screen printed electrochemical sensors for selective detection of heavy metals. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 490–493. [Google Scholar] [CrossRef]
- Medina-Sanchez, M.; Cadevall, M.; Ros, J.; Merkoci, A. Eco-friendly electrochemical lab-on-paper for heavy metal detection. Anal. Bioanal. Chem. 2015, 407, 8445–8449. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.G.; Narakathu, B.B.; Atashbar, M.Z.; Rebros, M.; Hrehorova, E.; Joyce, M. Printed electrochemical based biosensors on flexible substrates. In Proceedings of the 2010 IEEE SENSORS, Kona, HI, USA, 1–4 November 2010; pp. 1596–1600. [Google Scholar] [CrossRef]
- Narakathu, B.B.; Devadas, M.S.; Reddy, A.S.; Eshkeiti, A.; Moorthi, A.; Fernando, I.R.; Miller, B.P.; Ramakrishna, G.; Sinn, E.; Joyce, M.; et al. Novel fully screen printed flexible electrochemical sensor for the investigation of electron transfer between thiol functionalized viologen and gold clusters. Sens. Actuators B Chem. 2013, 176, 768–774. [Google Scholar] [CrossRef]
- Maddipatla, D.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. Development of a printed impedance based electrochemical sensor on paper substrate. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1138–1140. [Google Scholar]
- Grau, G.; Cen, J.; Kang, H.; Kitsomboonloha, R.; Scheideler, W.J.; Subramanian, V. Gravure-printed electronics: Recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flex. Print. Electron. 2016, 1, 023002. [Google Scholar] [CrossRef]
- Good, R.J. Contact angle, wetting, and adhesion: A critical review. J. Adhes. Sci. Technol. 1992, 6, 1269–1302. [Google Scholar] [CrossRef]
- Sheets, R.W. Extraction of lead, cadmium and zinc from overglaze decorations on ceramic dinnerware by acidic and basic food substances. Sci. Total Environ. 1997, 197, 167–175. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddipatla, D.; Narakathu, B.; Turkani, V.; Bazuin, B.; Atashbar, M. A Gravure Printed Flexible Electrochemical Sensor for the Detection of Heavy Metal Compounds. Proceedings 2018, 2, 950. https://doi.org/10.3390/proceedings2130950
Maddipatla D, Narakathu B, Turkani V, Bazuin B, Atashbar M. A Gravure Printed Flexible Electrochemical Sensor for the Detection of Heavy Metal Compounds. Proceedings. 2018; 2(13):950. https://doi.org/10.3390/proceedings2130950
Chicago/Turabian StyleMaddipatla, Dinesh, Binu Narakathu, Vikram Turkani, Bradley Bazuin, and Massood Atashbar. 2018. "A Gravure Printed Flexible Electrochemical Sensor for the Detection of Heavy Metal Compounds" Proceedings 2, no. 13: 950. https://doi.org/10.3390/proceedings2130950
APA StyleMaddipatla, D., Narakathu, B., Turkani, V., Bazuin, B., & Atashbar, M. (2018). A Gravure Printed Flexible Electrochemical Sensor for the Detection of Heavy Metal Compounds. Proceedings, 2(13), 950. https://doi.org/10.3390/proceedings2130950