Response Characteristics of Silicon Microring Resonator Hydrogen Sensor †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Masuzawa, S.; Okazaki, S.; Yusuke, M.; Tadahiro, M. Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings. Sens. Actuators B Chem. 2015, 217, 151–157. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Xu, B.; Wang, D.; Yang, M. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect. Opt. Commun. 2018, 414, 166–171. [Google Scholar] [CrossRef]
- Crowl, D.A.; Jo, Y.-D. The hazards and risks of hydrogen. J. Loss Prevent. Proc. 2007, 20, 158–164. [Google Scholar] [CrossRef]
- Kishore, P.V.N.; Shankar, M.S.; Satyanarayana, M. Detection of trace amounts of chromium(VI) using hydrogel coated Fiber Bragg grating. Sens. Actuators B Chem. 2017, 243, 626–633. [Google Scholar] [CrossRef]
- Pawar, D.; Kitture, R.; Kale, S.N. ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies. Opt. Laser Technol. 2017, 89, 46–53. [Google Scholar] [CrossRef]
- Lokman, A.; Harun, S.W.; Harith, Z.; Rafaie, H.A.; Nor, R.M.; Arof, H. Inline Mach-Zehnder interferometer with ZnO nanowires coating for the measurement of uric acid concentrations. Sens. Actuators A Phys. 2015, 234, 206–211. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, Y.; Wang, Y. Asymmetrical microring resonator based on whispering gallery modes for the detection of glucose concentration. Optik 2018, 171, 642–647. [Google Scholar] [CrossRef]
- Liu, Q.; Lim, B.K.L.; Lim, S.Y.; Tang, W.Y.; Gu, Z.; Chung, J.; Park, M.K.; Barkham, T. Label-free real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA). Sens. Actuators B Chem. 2018, 255, 1595–1603. [Google Scholar] [CrossRef]
- Meziane, F.; Raimbault, V.; Hallil, H.; Joly, S.; Conédéra, V.; Lachaud, J.L.; Béchou, L.; Rebière, D.; Dejous, C. Study of a polymer optical microring resonator for hexavalent chromium sensing. Sens Actuators B Chem. 2015, 209, 1049–1056. [Google Scholar] [CrossRef]
- Yebo, N.A.; Tailaert, D.; Roels, J.; Lahem, D.; Debliquy, M.; Thourhout, D.V.; Baets, R. Silicon-on-Insulator (SOI) Ring Resonator-Based Integrated Optical Hydrogen Sensor. IEEE Photonics Technol. Lett. 2009, 21, 960–962. [Google Scholar] [CrossRef]
- Fu, D.; Chung, J.; Liu, Q.; Raziq, R.; Kee, J.S.; Park, M.K.; Valiyaveettil, S.; Lee, P. Polymer coated silicon microring device for the detection of sub-ppm volatile organic compounds. Sens. Actuators B Chem. 2018, 257, 136–142. [Google Scholar] [CrossRef]
Height [µm] | Width [µm] | Roundtrip Length [µm] |
0.21 | 0.40 | 69.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamasaku, N.; Matsuura, S.; Nishijima, Y.; Arakawa, T.; Okazaki, S. Response Characteristics of Silicon Microring Resonator Hydrogen Sensor. Proceedings 2018, 2, 795. https://doi.org/10.3390/proceedings2130795
Yamasaku N, Matsuura S, Nishijima Y, Arakawa T, Okazaki S. Response Characteristics of Silicon Microring Resonator Hydrogen Sensor. Proceedings. 2018; 2(13):795. https://doi.org/10.3390/proceedings2130795
Chicago/Turabian StyleYamasaku, Naoki, Sosuke Matsuura, Yoshiaki Nishijima, Taro Arakawa, and Shinji Okazaki. 2018. "Response Characteristics of Silicon Microring Resonator Hydrogen Sensor" Proceedings 2, no. 13: 795. https://doi.org/10.3390/proceedings2130795
APA StyleYamasaku, N., Matsuura, S., Nishijima, Y., Arakawa, T., & Okazaki, S. (2018). Response Characteristics of Silicon Microring Resonator Hydrogen Sensor. Proceedings, 2(13), 795. https://doi.org/10.3390/proceedings2130795