Monolithically Integrated, CMOS-Compatible SiN Photonics for Sensing Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wafer Processing
2.2. OCT Application
3. Results
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Baets, R.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Biestman, P.; Le Thomas, N.; Roelkens, G.; Van Thourhout, D.; Helin, P.; Severi, S. Silicon photonics: Silicon nitride versus silicon-on-insulator. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition, Anaheim, CA, USA, 20–24 March 2016; pp. 1–3. [Google Scholar]
- Seyringer, D.; Maese-Novo, A.; Muellner, P.; Hainberger, R.; Kraft, J.; Koppitsch, G.; Meinhardt, G.; Sagmeister, M. Design and Optimization of High-Channel Si3N4 based AWGs for Medical Applications. In Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology, Funchal, Portugal, 25–27 January 2018; pp. 213–220. [Google Scholar]
- Seyringer, D.; Burtscher, C.; Edlinger, J.; Maese-Novo, A.; Muellner, P.; Hainberger, R.; Kraft, J.; Koppitsch, G.; Meinhardt, G.; Sagmeister, M. Design of 160-Channel Si3N4 based AWG-Spectrometer for Medical Applications. In Proceedings of the 2018 TechConnect World Innovation Conference and Expo, Anaheim, CA, USA, 13–16 May 2018; Volume 4, pp. 209–212. [Google Scholar]
Typical Value | Best Value | |
---|---|---|
Propagation loss TE [dB/cm] | 1.1 | 0.8 |
Propagation loss TM [dB/cm] | 0.6 | 0.4 |
90° bend loss TE (@ min. radius of 50 µm) [dB] | 0.025 | 0.010 |
90° bend loss TM (@ min. radius of 150 µm) [dB] | 0.025 | 0.010 |
Coupling loss [dB] | 1.3 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagmeister, M.; Koppitsch, G.; Muellner, P.; Nevlacsil, S.; MaeseNovo, A.; Hainberger, R.; Seyringer, D.; Kraft, J. Monolithically Integrated, CMOS-Compatible SiN Photonics for Sensing Applications. Proceedings 2018, 2, 1023. https://doi.org/10.3390/proceedings2131023
Sagmeister M, Koppitsch G, Muellner P, Nevlacsil S, MaeseNovo A, Hainberger R, Seyringer D, Kraft J. Monolithically Integrated, CMOS-Compatible SiN Photonics for Sensing Applications. Proceedings. 2018; 2(13):1023. https://doi.org/10.3390/proceedings2131023
Chicago/Turabian StyleSagmeister, Martin, Günther Koppitsch, Paul Muellner, Stefan Nevlacsil, Alejandro MaeseNovo, Rainer Hainberger, Dana Seyringer, and Jochen Kraft. 2018. "Monolithically Integrated, CMOS-Compatible SiN Photonics for Sensing Applications" Proceedings 2, no. 13: 1023. https://doi.org/10.3390/proceedings2131023
APA StyleSagmeister, M., Koppitsch, G., Muellner, P., Nevlacsil, S., MaeseNovo, A., Hainberger, R., Seyringer, D., & Kraft, J. (2018). Monolithically Integrated, CMOS-Compatible SiN Photonics for Sensing Applications. Proceedings, 2(13), 1023. https://doi.org/10.3390/proceedings2131023