A Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application †
Abstract
:1. Introduction
2. System Description
2.1. Spectrometer
2.2. Sensor Front-End
2.3. Analog Readout Hardware
3. Measurement Results
4. Robustness Analysis
5. Conclusions
Funding
Conflicts of Interest
References
- Faller, L.M.; Leitzke, J.P.; Zangl, H. Design of a Fast, High-Resolution Sensor Evaluation Platform applied to a Capacitive Position Sensor for a Micromirror. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017. [Google Scholar]
- Faller, L.M.; Mitterer, T.; Leitzke, J.P.; Zangl, H. Design and Evaluation of a Fast, High-Resolution Sensor Evaluation Platform applied to MEMS Position Sensing. IEEE Trans. Instrum. Meas. 2017, 67, 1014–1027. [Google Scholar] [CrossRef]
- Tortschanoff, A.; Lenzhofer, M.; Frank, A.; Kenda, A.; Sandner, T.; Schenk, H. Improved MEMS based FT-IR Spectrometer: Position Encoding and Oosed Loop Control. In Proceedings of the IEEE International Symposium on Optomechatronic Technologies, Istanbul, Turkey, 21–23 September 2009. [Google Scholar]
- Lenzhofer, M.; Tortschanoff, A.; Fank, A.; Sandner, T.; Schenk, H.; Kraft, M.; Kenda, A. MOEMS translator actuator characterisation, position encoding and closed-loop control. Microsyst. Technol. 2010, 16, 901–907. [Google Scholar] [CrossRef]
- Zega, V.; Credi, C.; Bernasconi, R.; Langfelder, G.; Magagnin, L.; Levi, M.; Corigliano, A. The First 3-D-Printed z-Axis Accelerometers With Differential Capacitive Sensing. IEEE Sens. J. 2018, 18, 53–60. [Google Scholar] [CrossRef]
- Blaz, N.; Kisic, M.; Zivanov, L.; Damnianovic, M. Displacement Sensor Fabricated by 3D Additive Manufacturing. In Proceedings of the IEEE 40th International Spring Seminar on Electronics Technology, Sofia, Bulgaria, 10–14 May 2017. [Google Scholar]
- Krivec, M.; Lenzhofer, M.; Moldaschl, T.; Pribosek, J.; Abram, A.; Ortner, M. Inkjet Printing of Multi-Layered, Via-Free Conductive Coils for Inductive Sensing Application. Microsyst. Technol. 2018, 24, 2673–2682. [Google Scholar] [CrossRef]
- Faller, L.M.; Krivec, M.; Abram, A.; Zangl, H. AM Metal Substrates for Inkjet-Printing of Smart Devices. Meter. Charact. 2018, 143, 211–220. [Google Scholar] [CrossRef]
- Faller, L.M.; Zangl, H. Feasibility Considerations on an Ilnkjet-Printed Capacitive Postion Sensor for Electrostatically Actuated Resonant MEMS-Mirror Systems. IEEE J. Microelectromech. Syst. 2017, 26, 559–568. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faller, L.-M.; Zangl, H. A Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application. Proceedings 2018, 2, 1082. https://doi.org/10.3390/proceedings2131082
Faller L-M, Zangl H. A Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application. Proceedings. 2018; 2(13):1082. https://doi.org/10.3390/proceedings2131082
Chicago/Turabian StyleFaller, Lisa-Marie, and Hubert Zangl. 2018. "A Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application" Proceedings 2, no. 13: 1082. https://doi.org/10.3390/proceedings2131082
APA StyleFaller, L. -M., & Zangl, H. (2018). A Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application. Proceedings, 2(13), 1082. https://doi.org/10.3390/proceedings2131082