Development of Computer Vision Applications to Automate the Measurement of the Dimensions of Skin Wounds †
Abstract
:1. Introduction
2. Justification and Objectives
3. Method and Results
3.1. Application 1
- Select the photograph of the wound. JPG and PNG formats are supported.
- Scale the image. It supports two options: the manual option, in which the user selects two points on the image and records the distance in mm between them, and the automatic option, in which the application automatically detects markers with certain characteristics of shape, color and size.
- Determine the wound contour. It has two stages: in the first stage, the user manually sets a rectangle that completely encloses the wound, and the application makes a first approach to the wound contour. In the second stage, an iterative process of improvement in the definition of the wound contour is performed, in which the user draws a line where the wound or the healthy skin was wrongly classified. The application fits these requirements and delimits a new contour, using the color differences between the pixels classified as healthy skin and those classified as ulcer.
- Calculate the dimensions: circularity ratio, maximum length, perimeter and surface area.
- Save results: report in PDF format with the photograph of the skin wound, its contour and dimensions.
3.2. Application 2
- Select the video of the wound. AVI and MP4 formats are supported.
- Upload the video to the server. Its frames are extracted, the best ones (based on the geometry and the sharpness of the photograph) are selected, the 3D model is reconstructed and the point cloud in TXT format is returned to the application.
- Scale the 3D model. Markers with certain characteristics of shape, color and size are automatically detected. In the current version of the application, the markers are black circles placed on a grid of calibrated paper with a white background. The centroids are identified and the distance between them is scaled.
- Create an orthophotograph. It has a pixel size of 100 microns and Z, R, G, B data.
- Translate and rotate the 3D model. The user manually sets a rectangle that completely encloses the wound. The 3D model is translated so that the center of this rectangle matches the origin of the coordinate system. The 3D model is rotated, locating the wound at the top.
- Determine the wound contour. The procedure is similar to the one in Application 1.
- Determine the healthy skin contour. A 20 mm buffer is set with respect to the wound contour. This contour can be edited by the user.
- Interpolate the reference surface, using the healthy skin contour.
- Calculate the dimensions: circularity ratio, roughness index, maximum length, perimeter, surface area, excavated surface and volume.
- Save results: 3D model in OBJ format and report in PDF format with: orthophotograph, wound contour and its dimensions.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wannous, H.; Lucas, Y.; Treuillet, S. Enhanced Assessment of the Wound-Healing Process by Accurate Multiview Tissue Classification. IEEE Trans. Med. Imaging 2011, 30, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Tewary, S.; Routray, A. Diagnostic and Prognostic Utility of Non-Invasive Multimodal Imaging in Chronic Wound Monitoring: A Systematic Review. J. Med. Syst. 2017, 41, 46. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, L.B.; Sorensen, J.A.; Jemec, G.B.E.; Yderstraede, K.B. Methods to assess area and volume of wounds—A systematic review. Int. Wound J. 2016, 13, 540–553. [Google Scholar] [CrossRef]
- Pires, I.M.; Garcia, N. Wound Area Assessment using Mobile Application. In Proceedings of the HEALTHINF 2015—International Conference on Health Informatics, Lisbon, Portugal, 12–15 January 2015; pp. 271–282. [Google Scholar] [CrossRef]
- Budman, J.; Keenahan, K.; Acharya, S.; Brat, G.A. Design of a Smartphone Application for Automated Wound Measurements in Home Care. Connect. Health Symp. 2015, 1, e16. [Google Scholar] [CrossRef]
- Botella, R.; Palomar, J.M.; Escutia, M.B.; Buchón, F.F.; Sánchez-Jiménez, D.; García, A.; Escario, E.; Martínez, M.L. Modelado y medición de úlceras de la piel por técnicas fotogramétricas de objeto cercano (MEDULC). In Proyecto Coordinado UPV-La Fe; Editorial Universitat Politècnica De Valènci: Valènci, Spain, 2015. [Google Scholar]
- Martínez, M.L.; Escario, E.; Poblet, E.; Sánchez-Jiménez, D.; Buchón, F.F.; Izeta, A.; Jiménez, F. Hair follicle containing punch grafts accelerate chronic ulcer healing: A randomized controlled trial. J. Am. Acad. Dermatol. 2016, 75, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Jiménez, D. Aplicaciones médicas de la fotogrametría a la medición de úlceras de la piel. In Proyecto Final de Carrera; Universitat Politècnica de València: Valencia, Spain, 2013. [Google Scholar]
- Sánchez-Jiménez, D. Modelado de úlceras de la piel mediante fotogrametría: Escaneado basado en imágenes. In Proyecto Final de Grado; Universitat Politècnica de València: Valencia, Spain, 2014. [Google Scholar]
- Buchón, F.F. Sistemas Fotogramétricos Submilimétricos de Adquisición de Datos Tridimensionales Aplicados a la Dermatología. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2015. [Google Scholar]
- Sánchez-Jiménez, D.; Buchón, F.F.; Palomar, J.M.; Peris, G. Procesamiento automatizado de modelos tridimensionales de úlceras cutáneas. Primer Congr. En Ing. Geomática 2017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Jiménez, D.; Buchón-Moragues, F.; Escutia-Muñoz, B.; Botella-Estrada, R. Development of Computer Vision Applications to Automate the Measurement of the Dimensions of Skin Wounds. Proceedings 2019, 19, 18. https://doi.org/10.3390/proceedings2019019018
Sánchez-Jiménez D, Buchón-Moragues F, Escutia-Muñoz B, Botella-Estrada R. Development of Computer Vision Applications to Automate the Measurement of the Dimensions of Skin Wounds. Proceedings. 2019; 19(1):18. https://doi.org/10.3390/proceedings2019019018
Chicago/Turabian StyleSánchez-Jiménez, David, Fernando Buchón-Moragues, Begoña Escutia-Muñoz, and Rafael Botella-Estrada. 2019. "Development of Computer Vision Applications to Automate the Measurement of the Dimensions of Skin Wounds" Proceedings 19, no. 1: 18. https://doi.org/10.3390/proceedings2019019018
APA StyleSánchez-Jiménez, D., Buchón-Moragues, F., Escutia-Muñoz, B., & Botella-Estrada, R. (2019). Development of Computer Vision Applications to Automate the Measurement of the Dimensions of Skin Wounds. Proceedings, 19(1), 18. https://doi.org/10.3390/proceedings2019019018