Valorization of Anaerobic Digestate from Biowaste to High-Value Bioproducts: A Review †
Abstract
:1. Introduction
2. Review Methodology
3. Enzymes, Bioplastics, and Biopesticides
4. Current Challenges
- the complexity of biologically produced products;
- the optimization and scale-up studies that need to be carried out in order to transform OFMSW treatment plants (biogas or mechanical–biological treatment (MBT) plants) into biorefineries; and
- it not being possible at present to conduct an economic viability analysis of biorefinery schemes because the market size and value of some of the niche products are not easy to obtain.
Author Contributions
Conflicts of Interest
References
- Aydin, S.; Yesil, H.; Tugtas, A.E. Bioresource Technology Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour. Technol. 2018, 250, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Salhofer, S.; Obersteiner, G.; Schneider, F.; Lebersorger, S. Potentials for the prevention of municipal solid waste. Waste Manag. 2008, 28, 245–259. [Google Scholar] [CrossRef]
- Fritsch, C.; Staebler, A.; Happel, A.; Cubero Márquez, M.; Aguiló-Aguayo, I.; Abadias, M.; Cigognini, I.M.; Montanari, A.; López, M.J.; Suárez-Estrella, F.; et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability 2017, 9, 1492. [Google Scholar] [CrossRef]
- Uhlenhut, F.; Schlüter, K.; Gallert, C. Wet biowaste digestion: ADM1 model improvement by implementation of known genera and activity of propionate oxidizing bacteria. Water Res. 2018, 129, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Hermann, B.G.; Debeer, L.; De Wilde, B.; Blok, K.; Patel, M.K. To compost or not to compost: Carbon and energy footprints of biodegradable materials ’ waste treatment. Polym. Degrad. Stab. 2011, 96, 1159–1171. [Google Scholar] [CrossRef]
- Lombardi, L.; Carnevale, E.A.; Corti, A. Comparison of different biological treatment scenarios for the organic fraction of municipal solid waste. Int. J. Env. Sci. Technol. 2015, 12, 1–14. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Mace, S.; Llabres, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Tock, L.; Schummer, J. Sustainable waste-to-value biogas plants for developing countries. Waste Manag. 2017, 64, 1–2. [Google Scholar] [CrossRef]
- Waterton, J.; Slack, N. Report to discuss upgrading of biogas for feed to a plasma reactor. Project deliverable D4.1. Available online: http://plascarb.eu/assets/content/D4_1%20Biogas%20Upgrading%20Report.pdf.
- Torrijos, M. State of Development of Biogas Production in Europe. Procedia Env. Sci. 2016, 35, 881–889. [Google Scholar] [CrossRef]
- Watson, J.; Zhang, Y.; Si, B.; Chen, W.-T.; de Souza, R. Gasification of biowaste: A critical review and outlooks. Renew. Sustain. Energy Rev. 2018, 83, 1–17. [Google Scholar] [CrossRef]
- Baldinelli, A.; Dou, X.; Buchholz, D.; Marinaro, M.; Passerini, S.; Barelli, L. Addressing the energy sustainability of biowaste-derived hard carbon materials for battery electrodes. Green Chem. 2018, 20, 1527–1537. [Google Scholar] [CrossRef]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Scopus, 2017 Scopus®—Copyright Elsevier B.V. Available online: http://scopus.com (accessed on 14 February 2019).
- Janveja, C.; Rana, S.S.; Soni, S.K. Optimization of valorization of biodegradable kitchen waste biomass for production of fungal cellulase system by statistical modeling. Waste Biomass Valorization 2014, 5, 807–821. [Google Scholar] [CrossRef]
- Juwon, A.D.; Emmanuel, O.F. Experimental investigations on the effects of carbon and nitrogen sources on concomitant amylase and polygalacturonase production by Trichoderma viride BITRS-1001 in submerged fermentation. Biotechnol. Res. Int. 2012, 2012. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzcinski, A.P.; Liu, Y. Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste. Biofuel Res. J. 2014, 1, 98–105. [Google Scholar] [CrossRef]
- Abdullah, J.J.; Greetham, D.; Pensupa, N.; Tucker, G.A.; Du, C. Optimizing cellulase production from municipal solid waste (MSW) using solid state fermentation (SSF). J. Fundam. Renew. Energy Appl. 2016, 6, 206. [Google Scholar] [CrossRef]
- Escamilla-Alvarado, C.; Poggi-Varaldo, H.M.; Ponce-Noyola, M.T. Use of organic waste for the production of added-value holocellulases with Cellulomonas flavigena PR-22 and Trichoderma reesei MCG 80. Waste Manag. Res. 2013, 31, 849–858. [Google Scholar] [CrossRef]
- Sakai, K.; Miyake, S.; Iwama, K.; Inoue, D.; Soda, S.; Ike, M. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants. J. Appl. Microbiol. 2015, 118, 255–266. [Google Scholar] [CrossRef]
- Lee, S.Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 1996, 49, 1–14. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef]
- Lisansky, S.G.; Quinlan, R.; Tassoni, G. Bacillus Thuringiensis Production Handbook: Laboratory Methods, Manufacturing, Formulation, Quality Control, Registration; CPL Scientific Ltd.: Newbury, UK, 1993; ISBN 1872691854. [Google Scholar]
- Amulya, K.; Jukuri, S.; Mohan, S.V. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresour. Technol. 2015, 188, 231–239. [Google Scholar] [CrossRef]
- Eshtaya, M.K.; Nor ‘Aini, A.R.; Hassan, M.A. Bioconversion of restaurant waste into Polyhydroxybutyrate (PHB) by recombinant E. coli through anaerobic digestion. Int. J. Env. Waste Manag. 2013, 11, 27–37. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, D.; Zhou, Z.; Wang, J.L.; He, X.L.; Li, Z.W.; Yang, H.-N.; Qin, H.; Zhang, M.; Hu, G.-Q.; et al. The enrichment of microbial community for accumulating polyhydroxyalkanoates using propionate-rich waste. Appl. Biochem. Biotechnol. 2017, 182, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Daoud, W.A.; Fei, B.; Chen, L.; Kwan, T.H.; Lin, C.S.K. Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly (lactic acid) fibre production from food waste. J. Clean. Prod. 2017, 165, 157–167. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, H.; Jiang, L.; Yao, J.; Liang, J.; Wang, Q. Semi-solid state fermentation of food waste for production of Bacillus thuringiensis biopesticide. Biotechnol. Bioprocess Eng. 2015, 20, 1123–1132. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, L.; Gong, A.; Cao, Y.; Wang, B. Solid-state Fermentation of Kitchen Waste for Production of Bacillus thuringiensis-based Bio-pesticide. BioResources 2013, 8, 1124–1135. [Google Scholar] [CrossRef]
- Yin, C.-H.; Dong, X.; Lv, L.; Wang, Z.G.; Xu, Q.Q.; Liu, X.L.; Yan, H. Economic production of probiotics from kitchen waste. Food Sci. Biotechnol. 2013, 22, 59–63. [Google Scholar] [CrossRef]
- Kampioti, A. Nanocarbon from food waste: Dispersions and applications. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2016. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumaševičiūtė, R.; Ignatavičius, G. Valorization of Anaerobic Digestate from Biowaste to High-Value Bioproducts: A Review. Proceedings 2019, 16, 1. https://doi.org/10.3390/proceedings2019016001
Tumaševičiūtė R, Ignatavičius G. Valorization of Anaerobic Digestate from Biowaste to High-Value Bioproducts: A Review. Proceedings. 2019; 16(1):1. https://doi.org/10.3390/proceedings2019016001
Chicago/Turabian StyleTumaševičiūtė, Rasa, and Gytautas Ignatavičius. 2019. "Valorization of Anaerobic Digestate from Biowaste to High-Value Bioproducts: A Review" Proceedings 16, no. 1: 1. https://doi.org/10.3390/proceedings2019016001