Grassmannization of the 3D Ising Model †
Abstract
:1. Introduction
2. Results
2.1. Grassmannization of the Ising Model
- Draw all the n topologically different connected diagrams connecting the origin with site . Any occupied bond contributes 1 to the expansion order n.
- The n bare propagators live on the links (they are local), and are represented by a pair of Grassmann variables. A pair contributes a factor v in magnitude to the weight of the diagram. Propagation lines have no arrows.
- The interaction vertices live on the sites of the lattice, and can be of different type: the origin and end vertex belong to the , or class, the others belong to , or class, whose weights are in accordance with Equation (1). All j legs of the vertices must be connected by propagator lines.
- If a link is multiply occupied, a minus sign occurs when swapping 2 Grassmann variables. The minus signs can equivalently be inferred by identifying all fermionic loops.
- The total weight will be , being P the signature of the exchange permutation, and is the sum of al vertices that are of type j, . It follows that the weight of a diagram is an integer number times .
2.2. Results of the simulations
References
- Lenz, W. Beitrag zum Verstandnis der magnetischen Erscheinunge in festen Korpern. Phys. Zs. 1920, 21, 613–615. [Google Scholar]
- Ising, E. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik 1925, 31, 253–258. [Google Scholar] [CrossRef]
- Onsager, L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev. (Ser. I) 1944, 65. [Google Scholar] [CrossRef]
- El-Showk, S.; Paulos, M.F.; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A. Solving the 3D Ising model with the conformal bootstrap. Phys. Rev. D 2012, 86, 025022. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21. [Google Scholar] [CrossRef]
- Prokof’ev, N.V.; Svistunov, B.V. Worm algorithms for classical statistical models. Phys. Rev. Lett. 2001, 87, 160601. [Google Scholar] [CrossRef] [PubMed]
- Sandvik, A.W. Computational studies of quantum spin systems. In AIP Conference Proceedings; AIP: Stockholm, Sweden, 2010; Volume 1297, pp. 135–338. [Google Scholar]
- Dyson, F.J. Divergence of Perturbation Theory in Quantum Electrodynamics. Phys. Rev. 1952, 85, 631–632. [Google Scholar] [CrossRef]
- Pollet, L.; Kiselev, M.N.; Prokof’ev, N.V.; Svistunov, B.V. Grassmannization of classical models. New J. Phys. 2016, 18, 113025. [Google Scholar] [CrossRef]
- Berezin, F.A. The Method of Second Quantization, 1st ed.; Pure and Applied Physics 24; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Kramers, H.A.; Wannier, G.H. Statistics of the Two-Dimensional Ferromagnet. Part I. Phys. Rev. (Ser. I) 1941, 60. [Google Scholar] [CrossRef]
- Campostrini, M. Linked-cluster expansion of the Ising model. J. Stat. Phys. 2001, 103, 369–394. [Google Scholar] [CrossRef]
Site | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1,0,0) | 6 | 0 | 1 | 0 | 4 | 0 | 40 | 0 | 456 | 0 | 6100 | 0 |
(1,1,0) | 12 | 0 | 0 | 2 | 0 | 16 | 0 | 170 | 0 | 2144 | 0 | 30334 |
(1,1,1) | 8 | 0 | 0 | 0 | 6 | 0 | 54 | 0 | 648 | 0 | 8840 | 0 |
(4,0,0) | 6 | 0 | 0 | 0 | 0 | 1 | 0 | 40 | 0 | 1156 | 0 | 24136 |
(4,1,0) | 24 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 202 | 0 | 5006 | 0 |
(4,1,1) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 936 | 0 | 21474 |
(4,2,0) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 748 | 0 | 18647 |
(4,2,1) | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105 | 0 | 3507 | 0 |
(4,2,2) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 420 | 0 | 13440 |
(4,3,0) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35 | 0 | 2219 | 0 |
(4,3,1) | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 280 | 0 | 11060 |
(4,3,2) | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1260 | 0 |
(4,3,3) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4200 |
(7,0,0) | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 112 | 0 |
(7,1,0) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 802 |
(7,1,1) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
(7,2,0) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 |
(7,2,1) | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 360 |
(7,3,0) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 |
(9,0,0) | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
(9,1,0) | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
(10,0,0) | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martello, E.; Angilella, G.G.N.; Pollet, L. Grassmannization of the 3D Ising Model. Proceedings 2019, 12, 20. https://doi.org/10.3390/proceedings2019012020
Martello E, Angilella GGN, Pollet L. Grassmannization of the 3D Ising Model. Proceedings. 2019; 12(1):20. https://doi.org/10.3390/proceedings2019012020
Chicago/Turabian StyleMartello, E., G. G. N. Angilella, and L. Pollet. 2019. "Grassmannization of the 3D Ising Model" Proceedings 12, no. 1: 20. https://doi.org/10.3390/proceedings2019012020