Coexistence of Different Scaling Laws for the Entanglement Entropy in a Periodically Driven System †
Abstract
:1. Introduction
2. Results
3. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eisert, J.; Cramer, M.; Plenio, M.B. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 2010, 82, 277–306. [Google Scholar] [CrossRef]
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 2008, 80, 517–576. [Google Scholar] [CrossRef]
- Latorre, J.I.; Riera, A. A short review on entanglement in quantum spin systems. J. Phys. A: Math. Theor. 2009, 42, 504002. [Google Scholar] [CrossRef]
- Hastings, M.B. An area law for one-dimensional quantum systems. J. Stat. Mech.: Theor. Exp. 2007, 2007, P08024. [Google Scholar] [CrossRef]
- Vidal, G.; Latorre, J.I.; Rico, E.; Kitaev, A. Entanglement in Quantum Critical Phenomena. Phys. Rev. Lett. 2003, 90, 227902. [Google Scholar] [CrossRef]
- Nakagawa, Y.O.; Watanabe, M.; Sugiura, S.; Fujita, H. Universality in volume-law entanglement of scrambled pure quantum states. Nat. Commun. 2018, 9, 1635. [Google Scholar] [CrossRef] [PubMed]
- Vidmar, L.; Hackl, L.; Bianchi, E.; Rigol, M. Volume Law and Quantum Criticality in the Entanglement Entropy of Excited Eigenstates of the Quantum Ising Model Phys. Rev. Lett. 2018, 121, 220602. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 2017, 89, 011004. [Google Scholar] [CrossRef]
- De Chiara, G.; Montangero, S.; Calabrese, P.; Fazio, R. Entanglement entropy dynamics in Heisenberg chains. J. Stat. Mech. 2006, 0603, P03001. [Google Scholar] [CrossRef]
- Cincio, L.; Dziarmaga, J.; Rams, M.M.; Zurek, W.H. Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model. Phys. Rev. A 2007, 75, 052321. [Google Scholar] [CrossRef]
- Alba, V.; Calabrese, P. Entanglement dynamics after quantum quenches in generic integrable systems. SciPost Phys. 2018, 4, 17. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Katsimiga, G.C.; Kevrekidis, P.G.; Schmelcher, P. Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas. New J. Phys. 2018, 20, 043052. [Google Scholar] [CrossRef]
- Apollaro, T.J.G.; Palma, G.M.; Marino, J. Entanglement entropy in a periodically driven quantum Ising ring. Phys. Rev. B 2016, 94, 134304. [Google Scholar] [CrossRef]
- Sen, A.; Nandy, S.; Sengupta, K. Entanglement generation in periodically driven integrable systems: Dynamical phase transitions and steady state. Phys. Rev. B 2016, 94, 214301. [Google Scholar] [CrossRef]
- Russomanno, A.; Santoro, G.E.; Fazio, R. Entanglement entropy in a periodically driven Ising chain. J. Stat. Mech. Theor. Exp. 2016, 2016, 073101. [Google Scholar] [CrossRef]
- Haldar, A.; Moessner, R.; Das, A. Onset of Floquet thermalization. Phys. Rev. B 2018, 97, 245122. [Google Scholar] [CrossRef]
- Das, A. Exotic freezing of response in a quantum many-body system. Phys. Rev. B 2010, 82, 172402. [Google Scholar] [CrossRef]
- Calabrese, P.; Cardy, J. Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. Theor. Exp. 2005, 2005, P04010. [Google Scholar] [CrossRef]
- Lieb, E.; Schultz, T.; Mattis, D. Two soluble models of an antiferromagnetic chain. Ann. Phys. 1961, 16, 407–466. [Google Scholar] [CrossRef]
- Grifoni, M.; Hänggi, P. Driven quantum tunneling. Phys. Rep. 1998, 304, 229–354. [Google Scholar] [CrossRef]
- Lorenzo, S.; Marino, J.; Plastina, F.; Palma, G.M.; Apollaro, T.J.G. Quantum Critical Scaling under Periodic Driving. Sci. Rep. 2017, 7, 5672. [Google Scholar] [CrossRef] [PubMed]
- Iglói, F.; Lin, Y.C. Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings. J. Stat. Mech. Theor. Exp. 2008, 2008, P06004. [Google Scholar] [CrossRef]
- Berdanier, W.; Kolodrubetz, M.; Vasseur, R.; Moore, J.E. Floquet Dynamics of Boundary-Driven Systems at Criticality. Phys. Rev. Lett. 2017, 118, 260602. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apollaro, T.J.G.; Lorenzo, S. Coexistence of Different Scaling Laws for the Entanglement Entropy in a Periodically Driven System. Proceedings 2019, 12, 6. https://doi.org/10.3390/proceedings2019012006
Apollaro TJG, Lorenzo S. Coexistence of Different Scaling Laws for the Entanglement Entropy in a Periodically Driven System. Proceedings. 2019; 12(1):6. https://doi.org/10.3390/proceedings2019012006
Chicago/Turabian StyleApollaro, Tony J. G., and Salvatore Lorenzo. 2019. "Coexistence of Different Scaling Laws for the Entanglement Entropy in a Periodically Driven System" Proceedings 12, no. 1: 6. https://doi.org/10.3390/proceedings2019012006
APA StyleApollaro, T. J. G., & Lorenzo, S. (2019). Coexistence of Different Scaling Laws for the Entanglement Entropy in a Periodically Driven System. Proceedings, 12(1), 6. https://doi.org/10.3390/proceedings2019012006