Growing Lettuce (Lactuca sativa L.) in Floating Disk Systems Under Variable and High Salinity Ranges in Water Enriched with Nanobubbles †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NBs | Nanobubbles |
NDVI | Normalized Difference Vegetation Index |
References
- Yang, X.; Gil, M.I.; Yang, Q.; Tomás-Barberán, F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4–45. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Breckle, S.-W. Is Sustainable Agriculture with Seawater Irrigation Realistic? In Salinity and Water Stress: Improving Crop Efficiency; Ashraf, M., Ozturk, M., Athar, H.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 187–196. [Google Scholar] [CrossRef]
- Kurunc, A. Effects of water and salinity stresses on growth, yield, and water use of iceberg lettuce. J. Sci. Food Agric. 2021, 101, 5688–5696. [Google Scholar] [CrossRef] [PubMed]
- Garrido, Y.; Tudela, J.A.; Marín, A.; Mestre, T.; Martínez, V.; Gil, M.I. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. J. Sci. Food Agric. 2014, 94, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Carillo, P.; Raimondi, G.; Kyriacou, M.C.; Pannico, A.; El-Nakhel, C.; Cirillo, V.; Colla, G.; de Pascale, S.; Rouphael, Y. Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce tolerance to salt stress. Sci. Hortic. 2019, 249, 22–30. [Google Scholar] [CrossRef]
- Duval, E.; Adichtchev, S.; Sirotkin, S.; Mermet, A. Long-lived submicrometric bubbles in very diluted alkali halide water solutions. Phys. Chem. Chem. Phys. 2012, 14, 4125–4132. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Enari, M.; Kawagoe, Y.; Makino, Y.; Oshita, S. Properties of the water containing nanobubbles as a new technology of the acceleration of physiological activity. Chem. Eng. Sci. 2012, 93, 250–256. [Google Scholar] [CrossRef]
- Liu, S.; Kawagoe, Y.; Makino, Y.; Oshita, S. Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles. Chem. Eng. Sci. 2013, 93, 250–256. [Google Scholar] [CrossRef]
- Orsini, F.; Morbello, M.; Fecondini, M.; Gianquinto, G. Hydroponic gardens: Undertaking malnutrition and poverty through vegetable production in the suburbs of Lima, Peru. Acta Hortic. 2009, 881, 173–177. [Google Scholar] [CrossRef]
- Izquierdo, J. Simplified hydroponics: A tool for food security in Latin America and the Caribbean. In Proceedings of the International Conference and Exhibition on Soilless Culture: ICESC, Singapore, 5–8 September 2005; Volume 742, pp. 67–74. [Google Scholar]
- Agarwal, K.; Trivedi, M.; Nirmalkar, N. Does salting-out effect nucleate nanobubbles in water: Spontaneous nucleation? Ultrason. Sonochemistry 2022, 82, 105860. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shahba, M.S.; Mansour, M.M.; Mohamed, H.I.; Sofy, M.R. Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J. Soil Sci. Plant Nutr. 2021, 21, 389–403. [Google Scholar] [CrossRef]
Fresh Green Biomass (g/plant) | Fresh Root Weight (g/plant) | Fresh Root Length (cm/plant) | |
---|---|---|---|
Average and ± Standard Deviation Weight * | |||
Main Treatment | Batavia Lettuce | ||
Control, tap water (E.C. < 1 dS/m) | 12.8 Ɨ ± 3.4 ŧ ab * | 3.57 ± 1.6 abc | 11.59 ± 1.8 a |
Control, tap water (E.C. 2 dS/m) | 4.29 ± 0.8 cd | 4.09 ± 2.3 a | 9.81 ± 1.3 ab |
Control, tap water (E.C. 4 dS/m) | 4.37 ± 1.3 cd | 3.68 ± 0.9 ab | 7.60 ± 1.3 b |
Control, tap water (E.C. 6 dS/m) | 4.4 ± 1.4 cd | 2.44 ± 2.0 ef | 3.14 ± 1.2 c |
Control, tap water (E.C. 8 dS/m) | 3.50 ± 1.6 cd | 1.68 ± 1.0 f | 2.93 ± 1.1 c |
Control, tap water (E.C. 10 dS/m) | 0.0 ± 0.0 d | 0.00 ± 0.0 g | 0.00 ± 0.0 c |
Tap water (E.C. < 1 dS/m) + NBs | 14.24 ± 1.1 a | 3.36 ± 0.5 abcd | 11.58 ± 1.8 a |
Tap water (E.C. 2 dS/m) + NBs | 15.72 ± 2.9 a | 3.04 ± 1.2 bcde | 11.89 ± 1.3 a |
Tap water (E.C. 4 dS/m) + NBs | 15.93 ± 2.2 a | 2.95 ± 1.1 bcde | 11.75 ± 1.4 a |
Tap water (E.C. 6 dS/m) + NBs | 16.17 ± 2.2 a | 2.78 ± 1.1 cde | 10.86 ± 1.3 ab |
Tap water (E.C. 8 dS/m) + NBs | 16.23 ± 2.8 a | 2.27 ± 0.9 ef | 11.05 ± 1.2 ab |
Tap water (E.C. 10 dS/m) + NBs | 16.84 ± 1.4 a | 2.39 ± 0.8 ef | 10.65 ± 1.7 ab |
Tap water (E.C. 12 dS/m) + NBs | 15.5 ± 5.4 a | 2.38 ± 0.7 ef | 10.30 ± 1.0 ab |
Tap water (E.C. 14 dS/m) + NBs | 7.55 ± 3.1 bc | 2.41 ± 1.2 def | 7.29 ± 1.7 b |
Chlorophyll Fluorescence Emission (PSII) | Chlorophyll (SPAD Units) | |
---|---|---|
Average and ± Standard Deviation * | ||
Main Treatment | Batavia Lettuce | |
Control, tap water (E.C. < 1 dS/m) | 0.80 ± 1.4 a * | 22.65 ± 0.0 a |
Control, tap water (E.C. 2 dS/m) | 0.79 ± 1.9 a | 23.3 ± 0.1 a |
Control, tap water (E.C. 4 dS/m) | 0.77 ± 1.3 a | 19.45 ± 0.2 abc |
Control, tap water (E.C. 6 dS/m) | 0.73 ± 1.1 b | 17.89 ± 0.1 bc |
Control, tap water (E.C. 8 dS/m) | 0.69 ± 1.2 b | 14.96 ± 0.1 c |
Control, tap water (E.C. 10 dS/m) | 0.00 ± 0.0 c | 0.00 ± 0.0 d |
Tap water (E.C. < 1 dS/m) + NBs | 0.81 ± 1.1 a | 22.60 ± 0.1 ab |
Tap water (E.C. 2 dS/m) + NBs | 0.80 ± 1.5 a | 21.30 ± 0.1 ab |
Tap water (E.C. 4 dS/m) + NBs | 0.78 ± 1.7 a | 21.05 ± 0.0 ab |
Tap water (E.C. 6 dS/m) + NBs | 0.79 ± 0.9 a | 21.38 ± 0.0 ab |
Tap water (E.C. 8 dS/m) + NBs | 0.80 ± 1.2 a | 20.09 ± 0.0 ab |
Tap water (E.C. 10 dS/m) + NBs | 0.78 ± 1.2 a | 19.13 ± 0.0 abc |
Tap water (E.C. 12 dS/m) + NBs | 0.80 ± 1.1 a | 19.43 ± 0.0 abc |
Tap water (E.C. 14 dS/m) + NBs | 0.77 ± 1.7 a | 19.05 ± 0.0 abc |
Fresh Green Biomass (g/plant) | Fresh Green Biomass Length (cm/plant) | Fresh Root Weight (g/plant) | Fresh Root Length (cm/plant) | |
---|---|---|---|---|
Main Treatment | Batavia Lettuce | |||
NB enrichment once per day (E.C. < 1 dS/m) | 16.5 ± 2.2 a * | 8.83 ± 1.0 a | 3.23 ± 0.8 a | 25.33 ± 1.6 a |
NB enrichment once per 3 days (E.C. < 1 dS/m) | 16.45 ± 0.9 a | 8.00 ± 1.5 a | 2.95 ± 0.2 a | 30.00 ± 1.7 ab |
NB enrichment once per 7 days (E.C. < 1 dS/m) | 12.93 ± 2.9 b | 7.50 ± 1.9 a | 1.43 ± 1.9 b | 18.67 ± 1.7 b |
NB enrichment only once (E.C. < 1 dS/m) | 11.73 ± 1.6 b | 5.00 ± 1.1 b | 0.97 ± 1.1 b | 10.50 ± 1.5 c |
Chlorophyll (SPAD Units) | Chlorophyll Fluorescence Emission (PSII) | NDVI | |
---|---|---|---|
Main Treatment | Batavia Lettuce | ||
NB enrichment once per day (E.C. < 1 dS/m) | 19.2 ± 1.4 a * | 0.84 ± 0.0 a | 0.41 ± 0.0 a |
NB enrichment once per 3 days (E.C. < 1 dS/m) | 18.9 ± 1.3 a | 0.84 ± 0.0 a | 0.39 ± 0.0 a |
NB enrichment once per 7 days (E.C. < 1 dS/m) | 12.5 ± 1.8 b | 0.81 ± 0.0 ab | 0.36 ± 0.0 a |
NB enrichment only once (E.C. < 1 dS/m) | 7.2 ± 1.5 c | 0.80 ± 0.0 b | 0.29 ± 0.1 b |
NB Size (nm) | Concentration of NB Particles (106)/mL | |
---|---|---|
Main Treatment | Batavia Lettuce | |
Tap water (E.C. < 1 dS/m) + NBs | 444.2 ± 6.2 a * | 5.84 ± 1.8 b |
Tap water (E.C. 2 dS/m) + NBs | 290.5 ± 1.0 d | 7.5 ± 0.8 b |
Tap water (E.C. 4 dS/m) + NBs | 338.3 ± 1.4 cd | 8.79 ± 1.5 b |
Tap water (E.C. 6 dS/m) + NBs | 339.8 ± 5.3 cd | 10.24 ± 0.7 b |
Tap water (E.C. 8 dS/m) + NBs | 351.6 ± 4.7 bcd | 12.72 ± 6.8 ab |
Tap water (E.C. 10 dS/m) + NBs | 417.6 ± 4.6 ab | 17.94 ± 4.6 a |
Tap water (E.C. 12 dS/m) + NBs | 406.9 ± 2.2 abc | 18.59 ± 4.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoukidis, K.; Giannakoula, A.; Kosheleva, R.; Gertsis, A.; Apostolidis, A.; Strouthopoulos, G.; Varoutoglou, A. Growing Lettuce (Lactuca sativa L.) in Floating Disk Systems Under Variable and High Salinity Ranges in Water Enriched with Nanobubbles. Proceedings 2025, 117, 33. https://doi.org/10.3390/proceedings2025117033
Zoukidis K, Giannakoula A, Kosheleva R, Gertsis A, Apostolidis A, Strouthopoulos G, Varoutoglou A. Growing Lettuce (Lactuca sativa L.) in Floating Disk Systems Under Variable and High Salinity Ranges in Water Enriched with Nanobubbles. Proceedings. 2025; 117(1):33. https://doi.org/10.3390/proceedings2025117033
Chicago/Turabian StyleZoukidis, Konstantinos, Anastasia Giannakoula, Ramonna Kosheleva, Athanasios Gertsis, Antonios Apostolidis, Georgios Strouthopoulos, and Athanasios Varoutoglou. 2025. "Growing Lettuce (Lactuca sativa L.) in Floating Disk Systems Under Variable and High Salinity Ranges in Water Enriched with Nanobubbles" Proceedings 117, no. 1: 33. https://doi.org/10.3390/proceedings2025117033
APA StyleZoukidis, K., Giannakoula, A., Kosheleva, R., Gertsis, A., Apostolidis, A., Strouthopoulos, G., & Varoutoglou, A. (2025). Growing Lettuce (Lactuca sativa L.) in Floating Disk Systems Under Variable and High Salinity Ranges in Water Enriched with Nanobubbles. Proceedings, 117(1), 33. https://doi.org/10.3390/proceedings2025117033