Review of Critical Point Searches and Beam-Energy Studies †
Abstract
:1. Introduction
2. Statics
3. Dynamics
4. Concluding Remarks
Acknowledgments
References
- Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Szabo, K.K. The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678, [arXiv:hep-lat/hep-lat/0611014]. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecher, P. The QCD crossover at zero and non-zero baryon densities from Lattice QCD. Nucl. Phys. A 2018, 982, 847–850, [arXiv:hep-lat/1807.05607]. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, 561, 321–330, [arXiv:nucl-th/1710.09425]. [Google Scholar] [CrossRef]
- Pawlowski, J.M.; Rennecke, F. Higher order quark-mesonic scattering processes and the phase structure of QCD. Phys. Rev. 2014, D90, 076002, [arXiv:hep-ph/1403.1179]. [Google Scholar] [CrossRef]
- Pawlowski, J.M. The QCD phase diagram: Results and challenges. AIP Conf. Proc. 2011, 1343, 75–80, [arXiv:hep-ph/1012.5075]. [Google Scholar] [CrossRef]
- Vuorinen, A. Quark Matter Equation of State from Perturbative QCD. EPJ Web Conf. 2017, 137, 09011, [arXiv:hep-ph/1611.04557]. [Google Scholar] [CrossRef]
- Fischer, C.S.; Luecker, J.; Welzbacher, C.A. Phase structure of three and four flavor QCD. Phys. Rev. 2014, D90, 034022, [arXiv:hep-ph/1405.4762]. [Google Scholar] [CrossRef]
- Rennecke, F.; Schaefer, B.J. Fluctuation-induced modifications of the phase structure in (2+1)-flavor QCD. Phys. Rev. 2017, D96, 016009, [arXiv:hep-ph/1610.08748]. [Google Scholar] [CrossRef]
- Critelli, R.; Noronha, J.; Noronha-Hostler, J.; Portillo, I.; Ratti, C.; Rougemont, R. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics. Phys. Rev. 2017, D96, 096026, [arXiv:nucl-th/1706.00455]. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, Part 1; Course of Theoretical Physics, Butterworth-Heinemann: Oxford, UK, 1980; Volume 5. [Google Scholar]
- Herbut, I. A Modern Approach to Critical Phenomena; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Pisarski, R.D.; Wilczek, F. Remarks on the Chiral Phase Transition in Chromodynamics. Phys.Rev. 1984, D29, 338–341. [Google Scholar] [CrossRef]
- Resch, S.; Rennecke, F.; Schaefer, B.J. Mass sensitivity of the three-flavor chiral phase transition. arXiv:1712.07961 2017. [arXiv:hep-ph/1712.07961]. [Google Scholar] [CrossRef]
- Kamikado, K.; Strodthoff, N.; von Smekal, L.; Wambach, J. Fluctuations in the quark-meson model for QCD with isospin chemical potential. Phys. Lett. 2013, B718, 1044–1053, [arXiv:hep-ph/1207.0400]. [Google Scholar] [CrossRef]
- Fu, W.j.; Pawlowski, J.M.; Rennecke, F. Strangeness Neutrality and QCD Thermodynamics. arXiv:1808.00410 2018. [arXiv:hep-ph/1808.00410]. [Google Scholar] [CrossRef]
- Stephanov, M.A.; Rajagopal, K.; Shuryak, E. V. Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. 1999, D60, 114028, [arXiv:hep-ph/9903292]. [Google Scholar] [CrossRef]
- Stephanov, M.A. Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 2009, 102, 032301, [arXiv:hep-ph/0809.3450]. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 2014, 112, 032302, [arXiv:nucl-ex/1309.5681]. [Google Scholar] [CrossRef]
- Hatta, Y.; Stephanov, M.A. Proton number fluctuation as a signal of the QCD critical endpoint. Phys. Rev. Lett. 2003, 91, 102003, [arXiv:hep-ph/hep-ph/0302002]. [Erratum: Phys. Rev. Lett.91,129901(2003)]. [Google Scholar] [CrossRef]
- Kitazawa, M.; Asakawa, M. Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions. Phys. Rev. 2012, C86, 024904, [arXiv:nucl-th/1205.3292]. [Erratum: Phys. Rev.C86,069902(2012)]. [Google Scholar] [CrossRef]
- Stephanov, M.A. On the sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 2011, 107, 052301, [arXiv:hep-ph/1104.1627]. [Google Scholar] [CrossRef]
- Schaefer, B.J.; Wagner, M. QCD critical region and higher moments for three flavor models. Phys. Rev. 2012, D85, 034027, [arXiv:hep-ph/1111.6871]. [Google Scholar] [CrossRef]
- Luo, X. Energy Dependence of Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR. PoS 2015, CPOD2014, 019, [arXiv:nucl-ex/1503.02558]. [Google Scholar] [CrossRef]
- Berdnikov, B.; Rajagopal, K. Slowing out-of-equilibrium near the QCD critical point. Phys. Rev. 2000, D61, 105017, [arXiv:hep-ph/hep-ph/9912274]. [Google Scholar] [CrossRef]
- Hohenberg, P.C.; Halperin, B.I. Theory of Dynamic Critical Phenomena. Rev. Mod. Phys. 1977, 49, 435–479. [Google Scholar] [CrossRef]
- Son, D.T.; Stephanov, M.A. Dynamic universality class of the QCD critical point. Phys. Rev. 2004, D70, 056001, [arXiv:hep-ph/hep-ph/0401052]. [Google Scholar] [CrossRef]
- Paech, K.; Stoecker, H.; Dumitru, A. Hydrodynamics near a chiral critical point. Phys. Rev. 2003, C68, 044907, [arXiv:nucl-th/nucl-th/0302013]. [Google Scholar] [CrossRef]
- Nahrgang, M.; Leupold, S.; Herold, C.; Bleicher, M. Nonequilibrium chiral fluid dynamics including dissipation and noise. Phys. Rev. 2011, C84, 024912, [arXiv:nucl-th/1105.0622]. [Google Scholar] [CrossRef]
- Mukherjee, S.; Venugopalan, R.; Yin, Y. Real time evolution of non-Gaussian cumulants in the QCD critical regime. Phys. Rev. 2015, C92, 034912, [arXiv:hep-ph/1506.00645]. [Google Scholar] [CrossRef]
- Nahrgang, M.; Bluhm, M.; Schäfer, T.; Bass, S.A. Diffusive dynamics of critical fluctuations near the QCD critical point. arXiv:1804.05728 2018. [arXiv:nucl-th/1804.05728]. [Google Scholar]
- Bluhm, M.; Jiang, Y.; Nahrgang, M.; Pawlowski, J.M.; Rennecke, F.; Wink, N. Time-evolution of fluctuations as signal of the phase transition dynamics in a QCD-assisted transport approach. In Proceedings of the 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018), Venice, Italy, 14–19 May 2018. [arXiv:hep-ph/1808.01377]. [Google Scholar]
- Stephanov, M.; Yin, Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point. Phys. Rev. 2018, D98, 036006, [arXiv:nucl-th/1712.10305]. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Some Implications of a Cosmological Phase Transition. Phys. Rept. 1980, 67, 183. [Google Scholar] [CrossRef]
- Zurek, W.H. Cosmological Experiments in Superfluid Helium? Nature 1985, 317, 505–508. [Google Scholar] [CrossRef]
- Liu, C.W.; Polkovnikov, A.; Sandvik, A.W. Dynamic scaling at classical phase transitions approached through non-equilibrium quenching. Phys. Rev. 2014, B89, 054307, [arXiv:cond-mat.stat-mech/1310.6327]. [Google Scholar] [CrossRef]
- Mukherjee, S.; Venugopalan, R.; Yin, Y. Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram. Phys. Rev. Lett. 2016, 117, 222301, [arXiv:hep-ph/1605.09341]. [Google Scholar] [CrossRef] [PubMed]
- Koch, V. Hadronic Fluctuations and Correlations. In Chapter of the Book "Relativistic Heavy Ion Physics"; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; pp. 626–652, [arXiv:nucl-th/0810.2520]. [Google Scholar] [CrossRef]
- Bzdak, A.; Koch, V.; Skokov, V. Baryon number conservation and the cumulants of the net proton distribution. Phys. Rev. 2013, C87, 014901, [arXiv:hep-ph/1203.4529]. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Rustamov, A.; Stachel, J. Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions. Nucl. Phys. 2017, A960, 114–130, [arXiv:nucl-th/1612.00702]. [Google Scholar] [CrossRef]
- Fu, W.j.; Pawlowski, J.M.; Rennecke, F. Strangeness neutrality and baryon-strangeness correlations. arXiv:1809.01594 2018. [arXiv:hep-ph/1809.01594]. [Google Scholar] [CrossRef]
- Bzdak, A.; Koch, V. Acceptance corrections to net baryon and net charge cumulants. Phys. Rev. 2012, C86, 044904, [arXiv:nucl-th/1206.4286]. [Google Scholar] [CrossRef]
- Garg, P.; Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.; Mohanty, B. Unfolding of event-by-event net-charge distributions in heavy-ion collision. J. Phys. 2013, G40, 055103, [arXiv:nucl-ex/1211.2074]. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rennecke, F. Review of Critical Point Searches and Beam-Energy Studies. Proceedings 2019, 10, 8. https://doi.org/10.3390/proceedings2019010008
Rennecke F. Review of Critical Point Searches and Beam-Energy Studies. Proceedings. 2019; 10(1):8. https://doi.org/10.3390/proceedings2019010008
Chicago/Turabian StyleRennecke, Fabian. 2019. "Review of Critical Point Searches and Beam-Energy Studies" Proceedings 10, no. 1: 8. https://doi.org/10.3390/proceedings2019010008
APA StyleRennecke, F. (2019). Review of Critical Point Searches and Beam-Energy Studies. Proceedings, 10(1), 8. https://doi.org/10.3390/proceedings2019010008