#
Photons as Probes of Gluon Saturation in Dilute + Dense Collisions^{ †}

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results

## 3. Conclusions

## Acknowledgments

## References

- Gelis, F.; Iancu, E.; Jalilian-Marian, J.; Venugopalan, R. The Color Glass Condensate. Ann. Rev. Nucl. Part. Sci.
**2010**, 60, 463. [Google Scholar] [CrossRef] - Gelis, F.; Jalilian-Marian, J. Photon production in high-energy proton nucleus collisions. Phys. Rev. D
**2002**, 66, 014021. [Google Scholar] [CrossRef] - Kopeliovich, B.; Tarasov, A.; Schafer, A. Bremsstrahlung of a quark propagating through a nucleus. Phys. Rev. C
**1999**, 59, 1609. [Google Scholar] [CrossRef] - Benic, S.; Fukushima, K.; Garcia-Montero, O.; Venugopalan, R. Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions. JHEP
**2017**, 1701, 115. [Google Scholar] [CrossRef] - Benic, S.; Fukushima, K. Photon from the annihilation process with CGC in the pA collision. Nucl. Phys. A
**2017**, 958, 1. [Google Scholar] [CrossRef] - Benić, S.; Fukushima, K.; Garcia-Montero, O.; Venugopalan, R. Constraining unintegrated gluon distributions from inclusive photon production in proton-proton collisions at the LHC. Phys. Lett. B
**2019**, 791, 11–16. [Google Scholar] [CrossRef] - Frixione, S. Isolated photons in perturbative QCD. Phys. Lett. B
**1998**, 429, 369. [Google Scholar] [CrossRef] - d’Enterria, D.; Rojo, J. Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data. Nucl. Phys. B
**2012**, 860, 311. [Google Scholar] [CrossRef] - Pumplin, J.; Stump, D.; Huston, J.; Lai, H.; Nadolsky, P.; Tung, W. New generation of parton distributions with uncertainties from global QCD analysis. JHEP
**2002**, 0207, 012. [Google Scholar] [CrossRef] - Dusling, K.; Gelis, F.; Lappi, T.; Venugopalan, R. Long range two-particle rapidity correlations in A+A collisions from high energy QCD evolution. Nucl. Phys. A
**2010**, 836, 159. [Google Scholar] [CrossRef] - Ma, Y.; Venugopalan, R. Comprehensive Description of J/Ψ Production in Proton-Proton Collisions at Collider Energies. Phys. Rev. Lett.
**2014**, 113, 192301. [Google Scholar] [CrossRef] [PubMed] - Ma, Y.; Tribedy, P.; Venugopalan, R.; Watanabe, K. Event engineering studies for heavy flavor production and hadronization in high multiplicity hadron-hadron and hadron-nucleus collisions. Phys. Rev. D
**2018**, 98, 074025. [Google Scholar] [CrossRef] - CMS Collaboration. Measurement of isolated photon production in pp and PbPb collisions at $\sqrt{{s}_{\mathrm{NN}}}$=2.76 TeV. Phys. Lett. B
**2012**, 710. [Google Scholar] - ATLAS Collaboration. Measurement of the inclusive isolated prompt photon cross section in pp collisions at $\sqrt{s}$=7 TeV with the ATLAS detector. Phys. Rev. D
**2011**, 83, 052005. [Google Scholar] [CrossRef] - CMS Collaboration. Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV. Phys. Rev. D
**2011**, 84, 052011. [Google Scholar] [CrossRef]

1 | For the NLO $gg\to q\overline{q}\gamma $ channel, one needs to insert two isolation cuts. |

**Figure 1.**Ratios of the ${k}_{\perp}$-factorized results to the full CGC for an energy of $\sqrt{s}=7\phantom{\rule{0.277778em}{0ex}}\mathrm{TeV}$ and an isolation cut $R=0.4$.The band represents the numerical error estimate from integrating the cross section using the VEGAS Monte Carlo routine.

**Figure 2.**Fraction of the inclusive photon cross section from the NLO $gg\to q\overline{q}\gamma $ channel relative to the total NLO+LO contribution, as a function of ${k}_{\gamma \perp}$ for the ${k}_{\perp}$-factorized formula [4]. The left panel shows the collision energy dependence at $\sqrt{s}=0.2,7,13\phantom{\rule{0.277778em}{0ex}}\mathrm{TeV}$ for ${\eta}_{\gamma}=1.0$. The right panel shows the photon rapidity dependence at ${\eta}_{\gamma}=0,1.0,2.0$ for $\sqrt{s}=7\phantom{\rule{0.277778em}{0ex}}\mathrm{TeV}$. In both cases, $R=0.4$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Benić, S.; Fukushima, K.; Garcia-Montero, O.; Venugopalan, R.
Photons as Probes of Gluon Saturation in Dilute + Dense Collisions. *Proceedings* **2019**, *10*, 33.
https://doi.org/10.3390/proceedings2019010033

**AMA Style**

Benić S, Fukushima K, Garcia-Montero O, Venugopalan R.
Photons as Probes of Gluon Saturation in Dilute + Dense Collisions. *Proceedings*. 2019; 10(1):33.
https://doi.org/10.3390/proceedings2019010033

**Chicago/Turabian Style**

Benić, Sanjin, Kenji Fukushima, Oscar Garcia-Montero, and Raju Venugopalan.
2019. "Photons as Probes of Gluon Saturation in Dilute + Dense Collisions" *Proceedings* 10, no. 1: 33.
https://doi.org/10.3390/proceedings2019010033