Impact of Organic and Inorganic Sources of Nitrogen on Soil Fertility, Nitrogen Use Efficiency, and Carbon Accumulation Potential Under Subtropical Rice-Based Cropping Patterns in Farmers’ Fields
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site
2.2. Experimental Factors
2.3. Crop Management at Farmers’ Field
2.4. Sample Collection and Preparation
2.5. Sample Analysis
2.5.1. General Properties of Soil and Organic Amendment
2.5.2. Organic Carbon and Macronutrient Analyses
2.5.3. Carbon Accumulation Potential Calculation
2.5.4. Calculation of System Productivity and Nitrogen Use Efficiency
2.6. Statistical Analysis
3. Results
3.1. General Physicochemical Properties of Soil and Organic Amendments
3.2. Influence of Organic Amendments on Soil Organic Carbon and Major Nutrients
3.3. System Productivity and Nitrogen Use Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleminew, A.; Alemayehu, M. Soil fertility depletion and its management options under crop production perspectives in Ethiopia: A review. Agric. Rev. 2020, 41, 91–105. [Google Scholar] [CrossRef]
- Shelake, R.M.; Waghunde, R.R.; Verma, P.P.; Singh, C.; Kim, J.-Y. Carbon Sequestration for Soil Fertility Management: Microbiological Perspective. In Soil Fertility Management for Sustainable Development; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2019; pp. 25–42. [Google Scholar] [CrossRef]
- Tudi, M.; Li, H.; Li, H.; Wang, L.; Yang, L.; Tong, S.; Yu, Q.J.; Ruan, H.D. Evaluation of soil nutrient characteristics in Tianshan Mountains, North-western China. Ecol. Indic. 2022, 143, 109431. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Ohoro, C.R.; Ojukwu, V.E.; Oniye, M.; Shaikh, W.A.; Biswas, J.K.; Seth, C.S.; Mohan, G.B.M.; Chandran, S.A.; Rangabhashiyam, S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. iScience 2025, 28, 111524. [Google Scholar] [CrossRef]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Lal, R. Carbon Management in Agricultural Soils. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Xu, M.; Lou, Y.; Sun, X.; Wang, W.; Baniyamuddin, M.; Zhao, K. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol. Fertil. Soils 2011, 47, 745–752. [Google Scholar] [CrossRef]
- Mulatu, G.; Bayata, A. Vermicompost as organic amendment: Effects on some soil physical, biological properties and crops performance on acidic soil: A review. Front. Environ. Microbiol. 2024, 10, 66–73. [Google Scholar] [CrossRef]
- Islam, M.T.; Iqbal, T.; Nayak, D.; Smith, J.; Hasan, M.M. Qualitative Analysis of Nitrogen Flows within Farms in Darusa, Bangladesh. Sustainability 2024, 16, 8226. [Google Scholar] [CrossRef]
- Ibn, R.A.; Ghosh, U.K.; Hossain, M.S.; Mahmud, A.; Saha, A.K.; Rahman, M.M.; Rahman, M.A.; Siddiqui, M.N.; Khan, M.A.R. Enhancing nitrogen use efficiency in cereal crops: From agronomy to genomic perspectives. Cereal Res. Commun. 2025, 53, 1–16. [Google Scholar] [CrossRef]
- Begum, R.; Jahangir, M.M.R.; Jahiruddin, M.; Islam, M.R.; Rahman, M.T.; Rahman, M.L.; Ali, M.Y.; Hossain, M.B.; Islam, K.R. Nitrogen fertilization impact on soil carbon pools and their stratification and lability in subtropical wheat-mungbean-rice agroecosystems. PLoS ONE 2021, 16, e0256397. [Google Scholar] [CrossRef] [PubMed]
- Huda, A.; Gaihre, Y.K.; Islam, M.R.; Singh, U.; Islam, M.R.; Sanabria, J.; Satter, M.A.; Afroz, H.; Halder, A.; Jahiruddin, M. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems. Nutr. Cycl. Agroecosyst. 2016, 104, 53–66. [Google Scholar] [CrossRef]
- Chivenge, P.; Sharma, S.; Bunquin, M.A.; Hellin, J. Improving Nitrogen Use Efficiency—A Key for Sustainable Rice Production Systems. Front. Sustain. Food Syst. 2021, 5, 737412. [Google Scholar] [CrossRef]
- Liang, K.; Zhong, X.; Fu, Y.; Hu, X.; Li, M.; Pan, J.; Liu, Y.; Hu, R.; Ye, Q. Mitigation of environmental N pollution and greenhouse gas emission from double rice cropping system with a new alternate wetting and drying irrigation regime coupled with optimized N fertilization in South China. Agric. Water Manag. 2023, 282, 108282. [Google Scholar] [CrossRef]
- Meena, A.L.; Pandey, R.N.; Kumar, D.; Sharma, V.K.; Meena, M.D.; Karwal, M.; Dutta, D.; Meena, L.K.; Narwal, E.; Mishra, R.P. Impacts of long-term rice-based organic farming on fractions and forms of soil organic carbon and nitrogen in the Indo-Gangetic Plain. Soil Res. 2022, 61, 159–175. [Google Scholar] [CrossRef]
- Dutta, D.; Meena, A.L.; Bhanu, C.; Ghasal, P.; Choudhary, J.; Kumar, S.; Mishra, R.; Ansari, M.; Raghavendra, K.J.; Prusty, A.; et al. Sustainable Soil Management for Climate Resilience: Long-Term Management Effects on Soil Carbon Sequestration and Nitrogen Dynamics in a Semi-Arid Tropical Inceptisol of India. J. Soil Sci. Plant Nutr. 2024, 24, 4407–4426. [Google Scholar] [CrossRef]
- Farooq, M.S.; Majeed, A.; Ghazy, A.; Fatima, H.; Uzair, M.; Ahmed, S.; Murtaza, M.; Fiaz, S.; Khan, M.R.; Al-Doss, A.A.; et al. Partial replacement of inorganic fertilizer with organic inputs for enhanced nitrogen use efficiency, grain yield, and decreased nitrogen losses under rice-based systems of mid-latitudes. BMC Plant Biol. 2024, 24, 919. [Google Scholar] [CrossRef]
- Yeasmin, S.; Assaduzzaman; Kabir, M.S.; Anwar, M.P.; Islam, A.M.; Hoque, T.S. Influence of organic amendments on soil carbon sequestration potential of paddy soils under two irrigation regimes. Sustainability 2022, 14, 12369. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, J.; Liu, G.; Cadisch, G.; Hasegawa, T.; Chen, C.; Sun, H.; Tang, H.; Zeng, Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Change Biol. 2007, 13, 1989–2007. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhao, N.; Sun, X.; Hou, S.; Wang, P. Physiological Nitrogen Uptake and Utilisation Responses in Two Native Plants from the Qinghai-Tibet Plateau under Different Water and Fertiliser Conditions. Agronomy 2024, 14, 440. [Google Scholar] [CrossRef]
- Rahman, F.; Rahman, M.M.; Rahman, G.K.M.M.; Saleque, M.A.; Hossain, A.T.M.S.; Miah, M.G. Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice–rice cropping pattern. Carbon Manag. 2016, 7, 41–53. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall, Inc.: Englewood Chiffs, NY, USA, 1962. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Rowell, D.L. Soil Science: Methods and Applications, 1st ed.; Routledge: London, UK, 2014; p. 369. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of Degtjareff method of determining soil organic matter and proposed modification of the method of the chromic acid titration method. Soil Sci. 1934, 37, 29–39. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Warncke, D.; Brown, J.R. Potassium and other basic cations. Recomm. Chem. Soil Test Proced. North Cent. Reg. 1998, 1001, 31. [Google Scholar]
- Combs, S.M.; Denning, J.L.; Frank, K.D. Sulfate-sulfur. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication; Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998; pp. 35–40. [Google Scholar]
- Mahmoodabadi, M.; Heydarpour, E. Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. Int. Agrophysics 2014, 28, 169–176. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 August 2025).
- Senthilvalavan, P.; Sriramachandrasekharan, M.V.; Manivannan, R.; Ravikumar, C.; Lalitha, M.; Surendran, U.; Singh, P. Carbon sequestration in low land paddy soils: Effect of certain cultural and nutrient management practices: A review. Intl. J. Env. Clim. Change 2023, 13, 3170–3190. [Google Scholar] [CrossRef]
- Enebe, M.C.; Ray, R.L.; Griffin, R.W. Carbon sequestration and soil responses to soil amendments—A review. J. Hazard. Mater. Adv. 2025, 18, 100714. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zhai, Z.; Dai, H.; Yang, M.; Zhang, Y.; Liang, T. Soil organic carbon, carbon fractions, and microbial community under various organic amendments. Sci. Rep. 2024, 14, 25431. [Google Scholar] [CrossRef]
- Das, S.; Jeong, S.T.; Das, S.; Kim, P.J. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy. Front. Microbiol. 2017, 8, 1702. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.K.; Islam, S.S.; Jahan, M.; Kheya, S.A.; Uddin, M.R.; Islam, M.S.; Khomphet, T. Synergistic Effects of Vermicompost and Biochar Amendments on Soil Fertility and Wheat Productivity in Bangladesh Floodplain Soils. Senapathi, V., ed. Scientifica 2024, 2024, 6624984. [Google Scholar] [CrossRef] [PubMed]
- Sarma, B.; Farooq, M.; Gogoi, N.; Borkotoki, B.; Kataki, R.; Garg, A. Soil organic carbon dynamics in wheat—Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. J. Clean. Prod. 2018, 201, 471–480. [Google Scholar] [CrossRef]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 2012, 1, 26. [Google Scholar] [CrossRef]
- Oyege, I.; Bhaskar, M.S.B. Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Teka, K.; Abraha, B.; Mebrahtom, S.; Tsegay, A.; Welday, Y.; Gessesse, T.A.; Ostwald, M.; Hansson, L. Effect of Vermicompost on Soil Fertility and Crop Productivity in the Drylands of Ethiopia. Compost Sci. Util. 2024, 31, 75–85. [Google Scholar] [CrossRef]
- Ferdous, J.; Mumu, N.J.; Hossain, M.B.; Hoque, M.A.; Zaman, M.; Müller, C.; Jahiruddin, M.; Bell, R.W.; Jahangir, M.M.R. Co-application of biochar and compost with decreased N fertilizer reduced annual ammonia emissions in wetland rice. Front. Sustain. Food Syst. 2023, 6, 1067112. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhou, H.; Wu, M.; Shan, J.; Yan, X. Investigating drivers of N2 loss and N2O reducers in paddy soils across China. Sci. Total Environ. 2024, 954, 176287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, H.; Deng, Y.; Yi, C. Effects of Conservation Tillage on Agricultural Green Total Factor Productivity in Black Soil Region: Evidence from Heilongjiang Province, China. Land 2024, 13, 1212. [Google Scholar] [CrossRef]
- Pituello, C.; Polese, R.; Morari, F.; Berti, A. Outcomes from a long-term study on crop residue effects on plant yield and nitrogen use efficiency in contrasting soils. Eur. J. Agron. 2016, 77, 179–187. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C.; Maniruzaman, M.; Akhter, S.; Kabir, M.S. Carbon sequestration in paddy soil as influenced by organic and inorganic amendments. Carbon Manag. 2020, 11, 231–239. [Google Scholar] [CrossRef]
- Emran, S.-A.; Krupnik, T.J.; Aravindakshan, S.; Kumar, V.; Pittelkow, C.M. Impact of cropping system diversification on productivity and resource use efficiencies of smallholder farmers in south-central Bangladesh: A multi-criteria analysis. Agron. Sustain. Dev. 2022, 42, 78. [Google Scholar] [CrossRef]
Cropping Pattern | pH | EC (µs cm−1) | Particle Sizes (%) | Texture | ||
---|---|---|---|---|---|---|
(1:5 H2O) | Sand | Silt | Clay | |||
Rice–rice–rice | 7.4 ± 0.03 | 48.5 ± 0.50 | 34.0 ± 0.0 | 55.0 ± 1.0 | 11.0 ± 1.1 | Silty loam |
Rice–fallow–rice–mustard | 7.2 ± 0.04 | 61.0 ± 1.00 | 35.0 ± 1.0 | 55.0 ± 1.0 | 10.0 ± 0.0 | |
Rice–vegetables–rice | 7.3 ± 0.00 | 112.5 ± 2.50 | 36.5 ± 0.5 | 54.5 ± 0.5 | 9.0 ± 0.0 |
Amendment Type | OC | N | C:N Ratio | P | K | S |
---|---|---|---|---|---|---|
(%) | (ppm) | (meq 100 g−1) | (ppm) | |||
Compost | 12.2 ± 0.01 a | 1.63 ± 0.03 b | 7.5 | 303 ± 0.67 b | 129 ± 0.47 a | 122 ± 0.97 c |
Cowdung | 11.6 ± 0.15 b | 2.10 ± 0.12 a | 5.5 | 341 ± 0.75 a | 54 ± 0.03 c | 306 ± 0.50 a |
Vermicompost | 11.5 ± 0.02 b | 1.50 ± 0.06 b | 7.7 | 267 ± 0.61 c | 67 ± 0.04 b | 294 ± 0.80 b |
Level of significance | ** | ** | *** | *** | *** |
Cropping Pattern | Soil Amendments | P (ppm) | K (meq 100 g−1) | S (ppm) |
---|---|---|---|---|
Rice–rice–rice | Control | 16.3 ± 0.6 gh | 0.094 ± 0.004 d | 5.7 ± 0.1 g |
Compost | 34.0 ± 1.8 bc | 0.102 ± 0.000 d | 7.5 ± 0.1 f | |
Cowdung | 45.1 ± 0.3 a | 0.136 ± 0.005 c | 9.3 ± 0.3 de | |
Vermicompost | 29.0 ± 2.2 de | 0.144 ± 0.001 c | 10.0 ± 0.3 d | |
Rice–fallow–rice–mustard | Control | 12.4 ± 0.1 i | 0.099 ± 0.001 d | 7.3 ± 0.2 f |
Compost | 25.7 ± 0.6 ef | 0.114 ± 0.002 d | 8.5 ± 0.1 ef | |
Cowdung | 31.7 ± 1.2 cd | 0.138 ± 0.006 c | 12.3 ± 0.8 c | |
Vermicompost | 17.7 ± 1.9 g | 0.153 ± 0.019 c | 13.0 ± 0.9 c | |
Rice–vegetables–rice | Control | 14.2 ± 0.0 hi | 0.295 ± 0.004 b | 13.4 ± 0.2 c |
Compost | 30.1 ± 0.3 d | 0.311 ± 0.001 b | 18.8 ± 0.4 b | |
Cowdung | 36.0 ± 0.1 b | 0.355 ± 0.009 a | 21.1 ± 0.5 a | |
Vermicompost | 23.3 ± 0.2 f | 0.356 ± 0.007 a | 20.1 ± 0.4 a | |
Level of significance | * | * | ** |
Cropping Pattern | Soil Amendments | System Productivity (t ha−1) | Partial Factor Productivity of N | |||
---|---|---|---|---|---|---|
Summer Rice | Monsoon Rice | Winter Rice | System | |||
Rice–rice–rice | Control | 12.91 | 24.9 | 24.9 | 48.5 | 31.5 |
Compost | 10.14 | 18.7 | 18.7 | 40.4 | 24.7 | |
Cowdung | 11.98 | 21.8 | 21.8 | 48.5 | 29.2 | |
Vermicompost | 11.98 | 21.8 | 24.9 | 44.5 | 29.2 | |
Rice–fallow–rice–mustard | Control | 15.06 | - | 31.1 | 64.7 | 29.2 |
Compost | 12.44 | - | 24.9 | 56.6 | 24.7 | |
Cowdung | 15.98 | - | 34.3 | 68.7 | 31.5 | |
Vermicompost | 14.13 | - | 28.0 | 60.6 | 27.0 | |
Rice–vegetables–rice | Control | 73.44 | - | 31.1 | 64.7 | 29.4 |
Compost | 66.37 | - | 28.0 | 60.6 | 27.1 | |
Cowdung | 85.73 | - | 31.1 | 64.7 | 29.4 | |
Vermicompost | 85.73 | - | 31.1 | 64.7 | 29.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeasmin, S.; Noman, M.; Betto, Z.S.; Rahman, T.; Sarly, S.P.; Islam, A.K.M.M.; Anwar, M.P. Impact of Organic and Inorganic Sources of Nitrogen on Soil Fertility, Nitrogen Use Efficiency, and Carbon Accumulation Potential Under Subtropical Rice-Based Cropping Patterns in Farmers’ Fields. Nitrogen 2025, 6, 86. https://doi.org/10.3390/nitrogen6030086
Yeasmin S, Noman M, Betto ZS, Rahman T, Sarly SP, Islam AKMM, Anwar MP. Impact of Organic and Inorganic Sources of Nitrogen on Soil Fertility, Nitrogen Use Efficiency, and Carbon Accumulation Potential Under Subtropical Rice-Based Cropping Patterns in Farmers’ Fields. Nitrogen. 2025; 6(3):86. https://doi.org/10.3390/nitrogen6030086
Chicago/Turabian StyleYeasmin, Sabina, Mojakkar Noman, Zaren Subah Betto, Tamanna Rahman, Sanjida Parven Sarly, A. K. M. Mominul Islam, and Md. Parvez Anwar. 2025. "Impact of Organic and Inorganic Sources of Nitrogen on Soil Fertility, Nitrogen Use Efficiency, and Carbon Accumulation Potential Under Subtropical Rice-Based Cropping Patterns in Farmers’ Fields" Nitrogen 6, no. 3: 86. https://doi.org/10.3390/nitrogen6030086
APA StyleYeasmin, S., Noman, M., Betto, Z. S., Rahman, T., Sarly, S. P., Islam, A. K. M. M., & Anwar, M. P. (2025). Impact of Organic and Inorganic Sources of Nitrogen on Soil Fertility, Nitrogen Use Efficiency, and Carbon Accumulation Potential Under Subtropical Rice-Based Cropping Patterns in Farmers’ Fields. Nitrogen, 6(3), 86. https://doi.org/10.3390/nitrogen6030086