Case Study on 5th Year Impact of Soil Tillage on Carbon/Nitrogen Agronomy Key Nexus in Winter Wheat—Soybean Rotation
Abstract
1. Introduction
2. Materials and Methods
2.1. The Trial Site, Location, and Soil–Climate Conditions
2.2. The Applied Agronomy and Experimental Layout
2.3. Followed Parameters
- Main soil chemical properties (total nitrogen content was determined by Kjeldahl method [20]; ammoniacal nitrogen was determined by the Nessler technique, and nitrate nitrogen was determined by the colorimetric method; available P, K, Mg, Ca were determined by Mehlich III method [21]; soil reaction in 1 mol dm−3 KCl solution was determined using potentiometric method (ISO 10390 2005) [22]; soil organic carbon was determined by Tjurin method (ISO 14235 1998) [23]. The averaged soil sample was analyzed per treatment (4) and soil layer (2), while the sample was averaged from 3 collection points per treatment (indirect repetitions);
- Root nodules. Soybean plant samples were collected on 3 July 2025, from two different places per treatment, with samples taken from a row with a total extent of 1.0 m per treatment. The root nodules were separated and counted, then dried at 105 °C to a constant weight and weighed gravimetrically (KERN, model AC 200-4M, Balingen, Germany);
- Soil penetrometric resistance (using soil penetrometer PEN 100, manufacturer: OROSZ, Budapest, Hungary). The in situ measurements were performed on 3 June 2025 and consist of the soil profile 0–60 cm, while the records were taken at 6 replications per treatment (4), and every 1 cm was measured;
- Dry matter yield of the crops. The yield data was taken at harvest by measuring especially on a scale (scale: TCM 128/15-5309, Tenzona, Slovakia) after harvesting the entire variant; subsequently, the absolute dry matter yield was calculated. The moisture content of the yield sample was determined in the NPPC laboratory (moisture meter: Minifra scan NIT analyzer, ID 11217, manufacturer INFRACONT, Budapest, Hungary), after drying of the samples (1 per each of treatments and year, 20 in total) at 105 °C to a constant weight;
- Weather parameters (average air temperature and sum of precipitation). The weather data was obtained from the nearest observation station of the Slovak Hydrometeorological Institute (SHMÚ Bratislava, Slovakia) installed in Michalovce (up to 10 km as the crow flies from the trial site in Žbince), ensuring the quality of authentic data.
2.4. Statistics
3. Results and Discussion
3.1. Weather Conditions, Air Temperature, and Precipitation
3.2. DM Yields
3.3. Soil Nexus
3.3.1. Main Chemical Properties
3.3.2. Penetrometric Resistance and Key Precondition
3.4. Carbon/Nitrogen Nexus
3.4.1. Soil Mineral Nitrogen and Total Nitrogen
3.4.2. Root Nodules, Convergent and Occasionally Reverse Key Indicator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Cox. | organic carbon |
CZ | Czech Republik |
DE | Germany |
SHMÚ | Slovak Hydrometeorological Institute |
IT | Italy |
kp | kilopond |
Nan. | inorganic nitrogen |
Ndfa | nitrogen derived from atmosphere |
no. | number |
Nt | total nitrogen |
UK | United Kingdom |
References
- Małecka-Jankowiak, I.; Blecharczyk, A.; Sawinska, Z.; Piechota, T.; Idziak, R. The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland. Sustainability 2025, 17, 4293. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Di Bene, C.; Coli, A.; Antichi, D.; Petri, M.; Bonari, E. Rainfed wheat and soybean productivity in a long-term tillage experiment in Central Italy. Agronomy 2008, 100, 1418–1429. [Google Scholar] [CrossRef]
- Tóth, Š.; Porvaz, P.; Kotorová, D. The influence of selected soil physical parameters on alfalfa hay production. Agriculture 2002, 48, 464–471. [Google Scholar]
- Medvedeva, A.; Biryukova, O.; Ilchenko, Y.; Minkina, T.; Kucherenko, A.; Bauer, T.; Mandzhieva, S.; Mazarji, M. Nitrogen state of Haplic Chernozem of the European Part of Southern Russia in implementation of resource-saving technologies. J. Sci. Food Agric. 2002, 101, 2312–2318. [Google Scholar] [CrossRef]
- Jin, K.; De Neve, S.; Moeskops, B.; Lu, J.; Zhang, J.; Gabriels, D.; Cai, D.; Jin, J. Effects of different soil management practices on winter wheat yield and N losses on a dryland loess soil in China. Aust. J. Soil Res. 2008, 46, 455–463. [Google Scholar] [CrossRef]
- Okoth, J.; Mungai, N.; Ouma, J.; Baijukya, F. Effect of tillage on biological nitrogen fixation and yield of soybean (Glycine max L. Merril) varieties. Aust. J. Crop Sci. 2014, 8, 1140–1146. [Google Scholar]
- Huang, N.; Zhao, X.; Guo, X.; Sui, B.; Liu, J.; Wang, H.; Li, J. Tillage Methods Change Nitrogen Distribution and Enzyme Activities in Maize Rhizosphere and NonRhizosphere Chernozem in Jilin Province of China. Processes 2023, 11, 3253. [Google Scholar] [CrossRef]
- Tedone, L.; Ali, S.; De Mastro, G. The Effect of Tillage on Faba Bean (Vicia faba L.) Nitrogen Fixation in Durum Wheat Triticum turgidum L. subsp. Durum Desf-Based Rotation under a Mediterranean Climate. Agronomy 2023, 13, 105. [Google Scholar]
- Badalíková, B. Influence of Soil Tillage on Soil Compaction. In Soil Engineering; Springer: Heidelberg, Berlin, 2010; pp. 19–30. [Google Scholar]
- Dexter, A.R.; Birkás, M. Prediction of the soil structure produced by tillage. Soil Till. Res. 2004, 79, 233–238. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Balontayová, E.; Debska, B.; Bartkowiak, A.; Wasilewski, P. Tillage System as a Practice Affecting the Quality of Soils and Its Sustainable Management. Sustainability 2025, 17, 2867. [Google Scholar] [CrossRef]
- Malhi, S.S.; Légère, A.; Vanasse, A.; Parent, G. Effects of long-term tillage, terminating no-till and cropping system on organic C and N, and available nutrients in a Gleysolic soil in Québec, Canada. J. Agric. Sci. 2018, 156, 472–480. [Google Scholar] [CrossRef]
- Kotorová, D.; Kováč, L.; Jakubová, J.; Balla, P. The long-term different tillage and its effect on physical properties of heavy soils. Acta Fytotech. Zootech. 2018, 21, 100–107. [Google Scholar] [CrossRef]
- Tóth, Š.; Šoltysová, B.; Danilovič, M.; Kováč, L.; Hnát, A.; Kotorová, D.; Šariková, D.; Jakubová, J.; Balla, P.; Štyriak, I.; et al. Význam a Efekt Pôdnych Zlepšovačov Rôzneho Typu Pri Ich Použití v Podmienkach Diferencovanej Intenzity Obrábania Pôd, 1st ed.; Centrum výskumu rastlinnej výroby: Michalovce, Slovakia, 2013; p. 112; ISBN 978-80-89417-46-9.
- Tóth, Š. Soybean—cultivation. Michalovce, NPPC-ÚA: Michalovce, Slovakia, 2018; 145; ISBN 978-80-570-0615-2. (In Slovak)
- Kapoor, S.; Sood, T.; Kaur, J.; Hussain, N.; Katoch, V. Nitrogen Nexus: Unraveling the Threads of Loss, Efficiency, and Yield. In Agricultural Nutrient Pollution and Climate Change; Springer: Cham, Switzerland, 2025; 103–134.
- Gram, G.; Roobroeck, D.; Pypers, P.; Six, J.; Merckx, R.; Vanlauwe, B. Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis. PLoS ONE 2020, 15, e0239552. [Google Scholar] [CrossRef]
- MacKenzie, A.F.; Fan, M.X.; Cadrin, F. Nitrous oxide emission as affected by tillage, corn-soybean-alfalfa rotations and nitrogen fertilization. Can. J. Soil Sci. 1997, 77, 145–152. [Google Scholar] [CrossRef]
- Macák, M.; Žák, Š.; Andrejčíková, M. Carbon balance in environmentally friendly technologies. Res. J. Agric. Sci. 2011, 43, 3. [Google Scholar]
- Hrivňáková, K.; Makovníková, J.; Barančíková, G.; Bezák, P.; Bezákova, Z.; Dodok, R.; Greco, V.; Chlpík, J.; Kobza, J.; Listjak, M.; et al. A Uniform Workflows Analysis of Soils; Soil Science and Conservation Research Institute: Bratislava, Slovakia, 2011; 136; ISBN 978-80-89128-89-1. (In Slovak)
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- ISO 10390; Soil Quality–Determination of pH. ISO: Geneva, Switzerland, 2005.
- ISO 14235; Soil Quality–Determination of Organic Carbon by Sulfochromic Oxidation. ISO: Geneva, Switzerland, 1998.
- Prudil, J.; Pospíšilová, L.; Dryšlová, T.; Barančíková, G.; Smutný, V.; Sedlák, L.; Ryant, P.; Hlavinka, P.; Trnka, M.; Halas, J. Assessment of Carbon Sequestration as Affected by Different Management Practices Using the RothC Model. Plant Soil Environ. 2023, 69, 532–544. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, X.; Wang, L.; Zhao, J.; Gong, L.; Wang, S.; Wu, L.; Li, G.; Xiu, W.; Zhan, G. Effects of tillage management on cbbL-carrying bacteria and soil organic carbon dynamics across aggregate size classes in the farmland of North China Plain. Ecol. Indic. 2023, 150, 110213. [Google Scholar] [CrossRef]
- Spaccini, R.; Piccolo, A. Effects of field managements for soil organic matter stabilization on water-stable aggregate distribution and aggregate stability in three agricultural soils. J. Geochem. Explor. 2013, 129, 45–51. [Google Scholar] [CrossRef]
- Beutler, A.N.; Fontinelli, A.M.; Silva, L.S.D.; Galon, L.; Ferreira, M.M.; Fulaneti, F.S. Soil Com-paction and Cover with Black Oat on Soybean Grain Yield in Lowland under No-Tillage System. Ciência Rural. 2021, 51, e20200927. [Google Scholar] [CrossRef]
- Kotorová, D.; Šoltysová, B. Physical and Chemical Properties of Heavy Soils; CVRV: Piešťany, Slovakia, 2011. (In Slovak)
- Fecák, P.; Šariková, D.; Černý, I. Influence of tillage system and starting N fertilization on seed yield and quality of soy-bean Glycine max (L.) Merrill. Plant Soil Environ. 2010, 56, 105–110. [Google Scholar] [CrossRef]
- Karlen, D.L. Soil quality as an indicator of sustainable tillage practices. Soil Till. Res. 2004, 78, 129–130. [Google Scholar] [CrossRef]
- Birkás, M.; Dexter, A.R.; Kalmár, T.; Bottlik, L. Soil quality–soil condition–production stability. Cereal Res. Commun. 2006, 34, 135–138. [Google Scholar] [CrossRef]
- Regulation No. 151/2016. Regulation of Ministry of Agriculture and Rural Development of the Slovak Republic 2016, 20. (in Slovak). Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2016/151/20160415.html (accessed on 12 April 2018).
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Birkás, M.; Stingli, A.; Farkas, C.; Bottlik, L. Interaction between tillage-induced soil compaction and climate damage. Növénytermelés 2009, 58, 5–26. [Google Scholar] [CrossRef]
- Adamič, S.; Leskovšek, R. Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy 2021, 11, 2477. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K.; Torabian, S. A Short-Term Study of Soil Microbial Activities and Soybean Productivity under Tillage Systems with Low Soil Organic Matter. Appl. Soil Ecol. 2021, 168, 104122. [Google Scholar] [CrossRef]
- Modiba, M.M.; Ocansey, C.M.; Ibrahim, H.T.M.; Birkás, M.; Dekemati, I.; Simon, B. Assessing 16 Years of Tillage Dy-namics on Soil Physical Properties, Crop Root Growth and Yield in an Endocalcic Chernozem Soil in Hungary. Agronomy 2025, 15, 801. [Google Scholar] [CrossRef]
- Vijayan, R.; Joseph, J. Legume Root Nodules- Evolutionary Adaptation for Improved Survival Mechanism. J. Adv. Biol. Biotechnol. 2025, 28, 864–871. [Google Scholar] [CrossRef]
- Sineshchekov, V.E.; Tkachenko, G.I. Concentration of nitrate nitrogen in the soil and productivity of crops when long-term minimizing of tillage according to various forecrops. Vestn. NGAU 2019, 3, 60. [Google Scholar] [CrossRef]
- Kotorová, D.; Hnát, A.; Danilovič, M.; Šariková, D.; Balla, P. Soil tillage in relation to soil properties and yields of crops. Agriculture 2010, 56, 67–75. [Google Scholar]
- Tshovrebov, V.S.; Faizova, V.I.; Novikov, A.A.; Lysenko, V.Y.; Kalugin, D.V. Features of application of No-till technology on chernozems of the Central Ciscaucasia. In BIO Web of Conferences; EDP Sciences: Paris, France, 2020; 23, 02009.
- Kravchenko, Y.; Yarosh, A.; Chen, Y. Profile Soil Carbon and Nitrogen Dynamics in Typical Chernozem under Long-Term Tillage Use. Land 2022, 11, 1165. [Google Scholar] [CrossRef]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef]
- Bordeleau, L.M.; Prévost, D. Nodulation and nitrogen fixation in extreme environments. Plant Soil 1994, 161, 115–125. [Google Scholar] [CrossRef]
- Tsyliuryk, O.I.; Tkalich, Y.I.; Kolesnykova, K.V.; Rudakov, Y.М.; Tkalich, Y.Y. Modern trends and development directions of soil tillage systems in the world and Ukraine. Agrology 2025, 8, 48–54. [Google Scholar] [CrossRef]
- Abendroth, L.J.; Elmore, R.W.; Ferguson, R.B. Soybean Inoculation: Understanding the Soil and Plant Mechanisms Involved. Crop Production/Field Crops Soybean. University of Nebraska-Lincoln Extension. Inst. Agric. Nat. Resour. G 2006, 1621, G06-1621. [Google Scholar]
- Franzen, D.; Inglett, P.; Gasch, C. Asymbiotic Nitrogen Fixation is Greater in Soils under Long-Term No-Till Versus Conventional Tillage. Soil Sci. Soc. Am. J. 2019, 83, 1148–1152. [Google Scholar] [CrossRef]
- Neupauer, J. Využitie Potenciálu Inokulácie Sóje S Prípravkami Blumeria Consulting; Naše pole: Nitra, Slovakia, 2025; 54–55. (In Slovak)
- Aulakh, M.; Garg, A.; Manchanda, J.; Dercon, G.; Nguyen, M. Biological nitrogen fixation by soybean and fate of ap-plied 15N-fertilizer in succeeding wheat under conventional tillage and conservation agriculture practices. Nutr. Cycl. Agroecosystems 2017, 107, 79–89. [Google Scholar] [CrossRef]
- Dresler, S.; Bednarek, W.; Tkaczyk, P. Nitrate nitrogen in the soils of Eastern Poland as influenced by type of crop, nitrogen fertilisation and various organic fertilizers. J. Cent. Eur. Agric. 2011, 12, 2. [Google Scholar] [CrossRef]
- Hafif, B. Effect of Tillage on Soil Nitrogen; A Review. Int. J. Adv. Sci. Eng. Inf. Technol. 2014, 4, 4. [Google Scholar] [CrossRef]
N-NH4+ mg/kg | N-NO3− mg/kg | Nan. mg/kg | Nt % | P mg/kg | K mg/kg | Mg mg/kg | Ca mg/kg | pH/KCl | Cox. % | Humus % | C/N |
---|---|---|---|---|---|---|---|---|---|---|---|
11.7 | 7.0 | 18.7 | 0.169 | 141.1 | 567.4 | 366.7 | 3110 | 5.26 | 1.68 | 2.89 | 9.9 |
high | very high | very high | good | acidic | middle | middle |
Treatment | Soil Tillage | Crop | Tillage Depth | Tillage Frequency (During 2020/21–2024/25) | Main Tool (Tillage) | Main Tool (Drilling) |
---|---|---|---|---|---|---|
T1 | ‘Deep Loosening’ | soybean | 50 cm | 1 per 2 years (November 2020, October 2022, October 2024) | Chisel plough (Maschio Gasparo, IT) | Mzuri Pro till (UK) (without strip till) |
winter wheat | (not applicable, without tillage) | |||||
T2 | ‘Plowing’ | soybean | 30 cm | 1 per 2 years (November 2020, October 2022, October 2024) | Plough (Sukov, CZ) | |
winter wheat | (not applicable, without tillage) | |||||
T3 | ‘Strip-Till’ | soybean | 20 cm | 1 per year | Strip-tiller (Mzuri, UK) | Mzuri Pro till (UK) (with strip till) |
winter wheat | ||||||
T4 | ‘No-Till’ | soybean | (not applicable, without tillage) | Horsch Avatar (DE) | ||
winter wheat |
Type | Year/Crop | Preemergent | Postemergent/On Leaf |
---|---|---|---|
Herbicides | 2021/soybean | 2 L/ha Stomp Aqua (pendimethalin 455 g/L) + 0.25 L/ha Command (clomazone 480 g/L)—11 June | 0.7 L/ha Pulsar 40 (imazamox 40 g/L) + 1.25 L/ha Benta 480 (bentazone 480 g/L)—16 June |
2022/winter wheat | - | 50 g/ha Orcane (halauxifen 100 g/kg, florasulam 100 g/kg, pyroxsulam 240 g/kg, cloquintocet-acid 212.5 g/kg) + 0.5 L/ha Shaman (alkylpfenol alkoxylate 990 g/L)—27 April | |
2023/soybean | - | 3 kg/ha Sharpen (saflufenacil 700 g/kg) + 0.25 L/ha Command (clomazone 480 g/L)—15 May, 0.7 L/ha Pulsar 40 (imazamox 40 g/L) + 1.25 L/ha Basagran 480 (bentazone 480 g/L)—14 June | |
2024/winter wheat | - | 0.6 L/ha Pegas (florasulam 6.25 g/L, 2 452.5 g/L,4-D) —16 June | |
2025/soybean | - | 0.6 L/ha Pulsar 40 (imazamox 40 g/L) + 2 L/ha Basagran 480 (bentazone 480 g/L)—21 June | |
Fungicides | 2021/soybean | - | - |
2022/winter wheat | - | 0.5 L/ha Agrozol (tebuconazole 250 g/L) + 0.5 L/ha Vuvuzela (prochloraz 450 g/L)—5 June | |
2023/soybean | - | - | |
2024/winter wheat | - | 1.0 L/ha Agrozol (tebuconazole 250 g/L)—27 May | |
2025/soybean | - | - |
Crop | N | P | K | Amount of NPK |
---|---|---|---|---|
soybean | 0 | 0 | 0 | 0 |
winter wheat | 0 | 0 | 0 | 0 |
Parameter | Period | 2021 | 2022 | 2023 | 2024 | 30-Year Normal |
---|---|---|---|---|---|---|
Temperature, °C | year | 10.0 | 11.2 | 11.5 | 12.3 | 8.9 |
IV−IX | 17.1 | 18.2 | 17.8 | 19.5 | 16.0 | |
Precipitation, mm | year | 539 | 464 | 832 | 533 | 550 |
IV−IX | 307 | 295 | 461 | 378 | 348 |
Parameter | Period | April | May | June | July | August | September |
---|---|---|---|---|---|---|---|
Temperature, °C | 2025 | 11.6 | 12.9 | 21.3 | 21.4 | 20.7 | - |
30-year normal | 10.1 | 15.1 | 17.9 | 19.4 | 18.7 | 14.8 | |
Precipitation, mm | 2025 | 31 | 62 | 11 | 82 | 76 | - |
30-year normal | 41 | 57 | 70 | 74 | 62 | 44 |
Treatment | Moisture Content at Harvest, % | Dry Matter Yield, t/ha | ||||||
---|---|---|---|---|---|---|---|---|
2021 Soybean | 2022 Winter Wheat | 2023 Soybean | 2024 Winter Wheat | 2021 * Soybean | 2022 Winter Wheat | 2023 Soybean | 2024 Winter Wheat | |
T1 | 12.2 | 11.8 | 13.2 | 12.7 | 3.56 | 6.26 | 3.65 | 5.41 |
T2 | 12.0 | 9.7 | 12.9 | 12.5 | 4.03 | 7.04 | 4.09 | 6.21 |
T3 | 11.8 | 8.8 | 13.3 | 11.8 | 3.62 | 6.57 | 3.38 | 5.73 |
T4 | 11.9 | 8.3 | 13.8 | 11.5 | 3.44 | 6.33 | 3.19 | 5.66 |
Treatment | Soil Layer | P mg/kg | K mg/kg | Mg mg/kg | Ca mg/kg | pH/KCl | Cox. % | Humus % | C/N |
---|---|---|---|---|---|---|---|---|---|
T1 | 0–15 cm | 161.6 | 823.1 | 295.3 | 2525 | 5.51 | 2.01 | 3.46 | 10.6 |
15–30 cm | 168.3 | 617.6 | 279.2 | 2392 | 5.23 | 1.85 | 3.19 | 10.3 | |
0–30 cm | 165.0 | 720.4 | 287.3 | 2459 | 5.37 | 1.93 | 3.33 | 10.5 | |
evaluation | high | very high | high | good | acidic | good | good | middle | |
T2 | 0–15 cm | 159.7 | 865.5 | 360.8 | 2379 | 5.63 | 1.89 | 3.26 | 10.4 |
15–30 cm | 167.4 | 932.5 | 366.8 | 2415 | 5.62 | 1.89 | 3.26 | 9.8 | |
0–30 cm | 163,6 | 899.0 | 363.8 | 2397 | 5.63 | 1.89 | 3.26 | 10.1 | |
evaluation | high | very high | very high | good | weakly acidic | good | good | middle | |
T3 | 0–15 cm | 192.0 | 1049.4 | 392.7 | 2717 | 5.92 | 2.09 | 3.60 | 10.3 |
15–30 cm | 220.5 | 1092.3 | 408.9 | 2509 | 5.87 | 1.93 | 3.33 | 10.3 | |
0–30 cm | 206.3 | 1070.9 | 400.8 | 2613 | 5.90 | 2.01 | 3.46 | 10.3 | |
evaluation | very high | very high | very high | good | weakly acidic | good | good | middle | |
T4 | 0–15 cm | 245.6 | 911.0 | 261.6 | 1961 | 5.14 | 1.80 | 3.10 | 9.6 |
15–30 cm | 235.1 | 846.3 | 249.5 | 1969 | 5.12 | 1.87 | 3.22 | 10.6 | |
0–30 cm | 240.4 | 878.7 | 255.6 | 1965 | 5.13 | 1.84 | 3.16 | 10.1 | |
evaluation | very high | very high | good | middle | acidic | good | good | middle |
Treatment | Soil Layer | ||||
---|---|---|---|---|---|
0–15 cm | 15–30 cm | 0–30 cm | 30–60 cm | 0–60 cm | |
T1 | 24.4 | 23.7 | 24.0 | 32.4 | 28.2 |
T2 | 15.9 | 14.7 | 15.3 | 28.6 | 22.0 |
T3 | 21.2 | 21.2 | 21.2 | 27.5 | 24.4 |
T4 | 25.8 | 28.0 | 26.9 | 37.7 | 32.3 |
Treatment | Soil Layer | N-NH4+, mg/kg | N-NO3−, mg/kg | Nan., mg/kg | Nt, % |
---|---|---|---|---|---|
T1 | 0–15 cm | 18.5 | 19.0 | 37.5 | 0.190 |
15–30 cm | 22.8 | 17.2 | 40.0 | 0.179 | |
0–30 cm | 20.7 | 18.1 | 38.8 | 0.185 | |
T2 | 0–15 cm | 17.4 | 18.6 | 36.0 | 0.182 |
15–30 cm | 18.2 | 25.5 | 43.7 | 0.193 | |
0–30 cm | 17.8 | 22.1 | 39.9 | 0.188 | |
T3 | 0–15 cm | 17.8 | 20.0 | 37.8 | 0.204 |
15–30 cm | 20.3 | 19.6 | 39.9 | 0.188 | |
0–30 cm | 19.1 | 19.8 | 38.9 | 0.196 | |
T4 | 0–15 cm | 20.8 | 22.5 | 43.3 | 0.188 |
15–30 cm | 17.9 | 19.2 | 37.1 | 0.176 | |
0–30 cm | 19.4 | 20.9 | 40.2 | 0.182 |
Treatment | Plant Height | Plant Count | Nodules Count | Nodules Dry Weight | ||
---|---|---|---|---|---|---|
cm | No. per 1 m | No. per 1 m | No. per Plant | g per 1 m | g per Plant | |
T1 | 42.5 | 34 | 313 | 9.18 | 0.670 | 0.020 |
T2 | 44.1 | 33 | 203 | 6.85 | 0.295 | 0.009 |
T3 | 37.8 | 33 | 228 | 6.70 | 0.607 | 0.018 |
T4 | 40.2 | 35 | 256 | 7.23 | 0.912 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, Š.; Mižík, P.; Šoltysová, B.; Klemová, K.; Dupľák, Š.; Porvaz, P. Case Study on 5th Year Impact of Soil Tillage on Carbon/Nitrogen Agronomy Key Nexus in Winter Wheat—Soybean Rotation. Nitrogen 2025, 6, 87. https://doi.org/10.3390/nitrogen6040087
Tóth Š, Mižík P, Šoltysová B, Klemová K, Dupľák Š, Porvaz P. Case Study on 5th Year Impact of Soil Tillage on Carbon/Nitrogen Agronomy Key Nexus in Winter Wheat—Soybean Rotation. Nitrogen. 2025; 6(4):87. https://doi.org/10.3390/nitrogen6040087
Chicago/Turabian StyleTóth, Štefan, Peter Mižík, Božena Šoltysová, Katarína Klemová, Štefan Dupľák, and Pavol Porvaz. 2025. "Case Study on 5th Year Impact of Soil Tillage on Carbon/Nitrogen Agronomy Key Nexus in Winter Wheat—Soybean Rotation" Nitrogen 6, no. 4: 87. https://doi.org/10.3390/nitrogen6040087
APA StyleTóth, Š., Mižík, P., Šoltysová, B., Klemová, K., Dupľák, Š., & Porvaz, P. (2025). Case Study on 5th Year Impact of Soil Tillage on Carbon/Nitrogen Agronomy Key Nexus in Winter Wheat—Soybean Rotation. Nitrogen, 6(4), 87. https://doi.org/10.3390/nitrogen6040087