Urea Coated with Iron and Zinc Oxide Nanoparticles Reduces Nitrogen Leaching in Sandy Soil and Improves the Performance of Young Corn Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Experiments
2.2. Obtaining the Coated Urea
2.3. Experiment with Mineral Nitrogen Leaching
2.3.1. Experiment Setup
2.3.2. Mineral Nitrogen Leaching Analysis
2.3.3. Initial Growth and Nitrogen Uptake by Young Corn Plants
2.4. Statistical Analyses
3. Results
3.1. Mineral Nitrogen Leaching Experiment
3.2. Dry Mass Production and Nitrogen Uptake by Corn
4. Discussion
4.1. Mineral Nitrogen Leaching
4.2. Dry Mass Production and Nitrogen Uptake by Young Corn Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IFA—International Fertilizer Association. Ifastat-Database and Charts. 2023. Available online: https://api.ifastat.org/reports/download/12620 (accessed on 10 October 2025).
- Kumar, Y.; Tiwari, K.N.; Singh, T.; Raliya, R. Nanofertilizers and their role in sustainable agriculture. Ann. Plant Soil Res. 2021, 23, 238–255. [Google Scholar] [CrossRef]
- Kubar, M.S.; Wang, C.; Noor, R.S.; Feng, M.; Yang, W.; Kubar, K.A.; Soomro, K.; Yang, C.; Sun, H.; Hasan, M.E.; et al. Nitrogen fertilizer application rates and ratios promote the biochemical and physiological attributes of winter wheat. Front. Plant Sci. 2022, 13, 1011515. [Google Scholar] [CrossRef]
- Giraldo-Sanclemente, W.; Perez-Castillo, A.G.; Monge-Muñoz, M.; Chinchilla-Soto, C.; Chavarría-Pérez, L.; Alpízar-Marín, M.; Zaman, M. Impact of urease inhibitor on greenhouse gas emissions and rice yield in a rainfed transplanting rice system in Costa Rica. Front. Agron. 2025, 7, 1518802. [Google Scholar] [CrossRef]
- Wesołowska, M.; Rymarczyk, J.; Góra, R.; Baranowski, P.; Sławiński, C.; Klimczyk, M.; Supryn, G.; Schimmelpfennig, L. New slow-release fertilizers-economic, legal and practical aspects: A Review. Int. Agrophys. 2021, 35, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, A.A.; Abbas, M.H.H.; Attia, T.M.S.; El Bably, W.; Mahrous, S.E. Mineralization of organic carbon and nitrogen in semi-arid soils under organic and inorganic fertilization. Environ. Technol. Innov. 2018, 9, 243–253. [Google Scholar] [CrossRef]
- Santos, U.J.d.; Sampaio, E.V.d.S.B.; de Andrade, E.M.; Pinto, A.d.S.; Dias, B.d.O.; de Jesus, K.N.; da Silva Santana, M.; Althoff, T.D.; Fernandes, M.M.; Menezes, R.S.C. Nitrogen Stocks in Soil Classes Under Different Land Uses in the Brazilian Semiarid Region. J. Soil Sci. Plant Nutr. 2021, 21, 1621–1630. [Google Scholar] [CrossRef]
- Rutting, T.; Aronsson, H.; Delin, S. Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst. 2018, 110, 1–5. [Google Scholar] [CrossRef]
- Prado, J.; Alvarenga, P.; Ribeiro, H.; Fangueiro, D. Nutrient Potential Leachability in a Sandy Soil Amended with Manure-Based Fertilizers. Agronomy 2023, 13, 990. [Google Scholar] [CrossRef]
- Udvardi, M.; Below, F.E.; Castellano, M.J.; Eagle, A.J.; Giller, K.E.; Ladha, J.K.; Liu, X.; Maaz, T.M.; Nova-Franco, B.; Raghuram, N.; et al. A research road map for responsible use of agricultural nitrogen. Front. Sustain. Food Syst. 2021, 5, 660155. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Ma, S.; Zheng, X.; Wang, Z.; Lu, C. Effects of commonly used nitrification inhibitors—Dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—On soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 2020, 380, 114637. [Google Scholar] [CrossRef]
- Yin, W.; Li, Y.; Dong, Y. The Development of Urease-coated Inhibitor Synergistic Urea and its Effect on Wheat Growth. J. Soil Sci. Plant Nutr. 2024, 24, 4325–4337. [Google Scholar] [CrossRef]
- Lisboa, I.P.; Cassim, B.M.A.R.; Brasil, P.H.E.; Pereira, F.L.; Prestes, C.V.; Carvalho, H.W.P.; Lavres, J.; Bendassolli, J.A.; Otto, R.J. Association of NBPT and Zinc Sources into Urea: A New Approach to Slow Down Nitrogen Releasing and Reduce Losses. Soil Sci. Plant Nutr. 2024, 24, 6962–6979. [Google Scholar] [CrossRef]
- Abdullah, B.; Niazi, M.B.K.; Jahan, Z.; Khan, O.; Shahid, A.; Shah, G.A.; Azeem, B.; Iqbal, Z.; Mahmood, A. Role of zinc-coated urea fertilizers in improving nitrogen use efficiency, soil nutritional status, and nutrient use efficiency of test crops. Front. Environ. Sci. 2022, 10, 888865. [Google Scholar] [CrossRef]
- Mustafa, A.; Athar, F.; Khan, I.; Chattha, M.U.; Nawaz, M.; Shah, A.N.; Mahmood, A.; Batool, M.; Aslam, M.T.; Jaremko, M.; et al. Improving crop productivity and nitrogen use efficiency using sulfur and zinc-coated urea: A review. Front. Plant Sci. 2022, 13, 942384. [Google Scholar] [CrossRef]
- Arachchige, K.V.; McBeath, T.M.; Smernik, R.J.; Hettiarachchi, G.M.; Khalil, R. The effect of metal oxide coating of urea on mineralization in two contrasting soils. Soil Sci. Soc. Am. J. 2023, 87, 1304–1319. [Google Scholar] [CrossRef]
- Shakeel, S.; Mahmood, R.; Fatima, A.; Nadeem, F.; Ali, S.; Ali, N.; Haider, M.S.; Ma, Q. Iron (Fe) and zinc (Zn) coated urea application enhances nitrogen (N) status and bulb yield of onion (A. cepa) through prolonged urea-N stay in alkaline calcareous soil. Sci. Hortic. 2024, 336, 113421. [Google Scholar] [CrossRef]
- Yang, W.; Peng, Z.; Wang, G. An overview: Metal-based inhibitors of urease. J. Enzym. Inhib. Med. Chem. 2023, 38, 361–375. [Google Scholar] [CrossRef]
- Jadon, P.; Selladurai, R.; Yadav, S.S.; Coumar, M.V.; Dotaniya, M.L.; Singh, A.K.; Bhadouriya, J.; Kundu, S. Volatilization and leaching losses of nitrogen from different coated urea fertilizers. J. Soil Sci. Plant Nutr. 2018, 18, 1036–1047. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Andrews, J.; Fugice, J.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 2020, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Thabit, F.N. Influence of Nano-Zinc Oxide Coated Urea Fertilizer on Ammonia Volatilization Loss and Inorganic Nitrogen Content in Loamy Sand Soil. J. Soil Sci. Agric. Engin. 2021, 12, 189–193. [Google Scholar] [CrossRef]
- Beig, B.; Niazi, M.B.K.; Jahan, Z.; Haider, G.; Zia, M.; Shah, G.A.; Iqbal, Z.; Hayat, A. Development and testing of zinc sulfate and zinc oxide nanoparticle-coated urea fertilizer to improve N and Zn use efficiency. Front. Plant Sci. 2023, 13, 1058219. [Google Scholar] [CrossRef]
- Amin, S.; Aziz, T.; Zia-ur-Rehman, M.; Saleem, I.; Rizwan, M.; Ashar, A.; Mussawar, H.A.; Maqsood, M.A. Zinc oxide nanoparticles coated urea enhances nitrogen efficiency and zinc bioavailability in wheat in alkaline calcareous soils. Environ. Sci. Pollut. Res. 2023, 30, 70121–70130. [Google Scholar] [CrossRef]
- Cordeiro, C.F.S.; Rodrigues, D.R.; Rorato, A.F.S.; Echer, F.R. Cover crops and controlled-release urea decrease nitrogen mobility and improve nitrogen stock in a tropical sandy soil with cotton cultivation. Rev. Bras. Cienc. Solo 2022, 46, e0210113. [Google Scholar] [CrossRef]
- EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa em Solo. In Manual of Soil Analysis Methods, 2nd ed.; CRC Press: Rio de Janeiro, Brazil, 2011; 225p. [Google Scholar]
- Tedesco, M.J.; Volkweiss, S.J.; Bohmen, H. Soil, Plant and Other Material Analyses; UFRGS: Porto Alegre, Brazil, 1985; 95p. [Google Scholar]
- Marcelino, R.M.O.; Lopes Araujo, J.; Vital dos Santos, R.; Soares de Lima, G.; da Nóbrega Santos, E.; Correia da Costa, R. Vermiculite mining waste enriched with elemental sulfur as a chemical conditioner for alkaline saline soils. Commun. Soil Sci. Plant Anal. 2022, 54, 2271–2284. [Google Scholar] [CrossRef]
- Siddiqi, M.Y.; Glass, A.D.M. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J. Plant Nutr. 1981, 4, 289–302. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (Complete Samples). Biometrika 1965, 52, 591–609. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2023. [Google Scholar]
- Mendes, W.C.; Alves Junior, J.; Cunha, P.C.R.; Silva, A.R.; Evangelista, A.W.P.; Casalori, D. Nitrate leaching as a function of irrigation depths in clayey and sandy soils. Rev. Irrig. 2015, 1, 47–56. [Google Scholar] [CrossRef]
- Laura, C.; Grégoire, G. Reducing nitrate leaching losses from turfgrass fertilization of residential lawns. J. Environ. Qual. 2021, 50, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U.; Asghar, M.G.; Ikram, R.M.; Hashim, S.; Hussain, S.; Irfan, M.; Mubeen, K.; Ali, M.; Alam, M.; Ali, M.; et al. Sulphur coated urea improves morphological and yield characteristics of transplanted rice (Oryza sativa L.) through enhanced nitrogen uptake. J. King Saud Univ. Sci. 2021, 34, 101664. [Google Scholar] [CrossRef]
- Brace, B.E.; Schlossberg, M.J. Field Evaluation of Urea Fertilizers Enhanced by Biological Inhibitors or Dual Coating. Agronomy 2024, 14, 2118. [Google Scholar] [CrossRef]
- Faraz, A.; Imran, A.; Raza, H.; Iqbal, M.; Rehman, A. Sulfur nanoparticle-coated urea improves growth and nitrogen use efficiency in wheat (Triticum aestivum L.) and rice (Oryza sativa L.). Front. Nanotechnol. 2025, 7, 1565608. [Google Scholar] [CrossRef]
- Stamford, N.P.; Figueiredo, M.V.; Junior, S.d.S.; Freitas, A.D.S.; Santos, C.E.R.; Junior, M.A.L. Effect of gypsum and sulfur with Acidithiobacillus on soil salinity alleviation and on cowpea biomass and nutrient status as affected by PK rock biofertilizer. Sci. Hortic. 2015, 192, 287–292. [Google Scholar] [CrossRef]
- Mumbach, G.L.; Brignoli, F.M.; Gatiboni, L.C. Recommendation of elemental sulfur for reducing the pH of soils in southern Brazil. Rev. Bras. Eng. Agríc. Ambient. 2022, 26, 212–218. [Google Scholar] [CrossRef]
- Corbalán, M.; Da Silva, C.; Barahona, A.; Huiliñir, C.; Guerrero, L. Nitrification–Autotrophic Denitrification Using Elemental Sulfur as an Electron Donor in a Sequencing Batch Reactor (SBR): Performance and Kinetic Analysis. Sustainability 2024, 16, 4269. [Google Scholar] [CrossRef]
- Cui, L.; Li, D.; Wu, Z.; Xue, Y.; Xiao, F.; Zhang, L.; Song, Y.; Li, Y.; Zheng, Y.; Zhang, J.; et al. Effects of nitrification inhibitors on soil nitrification and ammonia volatilization in three soils with different pH. Agronomy 2021, 11, 1674. [Google Scholar] [CrossRef]
- Sarker, D.C.; Patel, C.M.; Heitz, A.A.H.M.; Anwar, F. Evaluation of zinc and copper for co-inhibition of nitrification in mild nitrified drinking water. J. Environ. Chem. Eng. 2018, 6, 2939–2943. [Google Scholar] [CrossRef]
- Khariri, R.b.A.; Yusop, M.K.; Musa, M.H.; Hussin, A. Laboratory Evaluation of Metal Elements Urease Inhibitor and DMPP Nitrification Inhibitor on Nitrogenous Gas Losses in Selected Rice Soils. Water Air Soil Pollut. 2016, 227, 232. [Google Scholar] [CrossRef]
- Ma, I.M.; Irshad, S.; Khan, S.; Hasnain, Z.; Ibrar, D.; Khan, A.R.; Saleem, M.F.; Bashir, S.; Alotaibi, S.S.; Matloob, A.; et al. Nitrogenous Fertilizer Coated With Zinc Improves the Productivity and Grain Quality of Rice Grown Under Anaerobic Conditions. Front. Plant Sci. 2022, 13, 914653. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef]
- Shanmugapriya, D.; Senthil, A.; Raveendran, M.; Djanaguiraman, M.; Anitha, K.; Ravichandran, V.; Pushpam, R.; Marimuthu, S. Responses of cereals to nitrogen deficiency: Adaptations on morphological, physiological, biochemical, hormonal and genetic basis. Plant Sci. Today 2025, 12, 1–10. [Google Scholar] [CrossRef]
- Qin, L.; Walk, T.C.; Han, P.; Chen, L.; Zhang, S.; Li, Y.; Hu, X.; Xie, L.; Yang, Y.; Liu, J.; et al. Adaption of roots to nitrogen deficiency revealed by 3d quantification and proteomic analysis. Plant Physiol. 2019, 179, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Palisaar, J.; Grünhofer, P.; Zeisler-Diehl, V.; Schreiber, L.; Dittert, K.; Kreszies, T. Nitrogen availability affects aerenchyma formation and suberization in early root development of soil-grown maize. Plant Sci. 2025, 362, 112786. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Y.; Chen, Y.; Li, Q.; Chen, F.; Gao, Q.; Mi, G. Effects of nitrogen application on root length and grain yield of rain-fed maize under different soil types. Agron. J. 2016, 108, 1656–1665. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Davis, K.E.; Patterson, C.; Oo, S.; Liu, W.; Liu, J.; Wang, G.; Fontana, J.E.; Thornburg, T.E.; et al. Response of Root Growth and Development to Nitrogen and Potassium Deficiency as well as microRNA-Mediated Mechanism in Peanut (Arachis hypogaea L.). Front. Plant Sci. 2021, 12, 695234. [Google Scholar] [CrossRef]
- Irshad, M.; Wahid, M.A.; Farrukh Saleem, F.M.; Khan, S.; Irshad, S.; Matloob, A.; Sarwar, M.; Ali, M.; Hasnain, Z.; Cheema, M.A. Zinc coated urea enhanced the growth and quality of rice cultivated under aerobic and anaerobic culture. J. Plant Nutr. 2021, 45, 1198–1213. [Google Scholar] [CrossRef]
- Saleem, M.H. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
- Oliveira, M.L.J.; Valladares, G.S.; Vieira, J.S.; Coelho, R.M. Availability and spatial variability of copper, iron, manganese and zinc in soils of the State of Ceará, Brazil. Rev. Cienc. Agron. 2018, 49, 371–380. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nozoye, T.; Nishizawa, N.K. Iron transport and its regulation in plants. Free Radical. Biol. Med. 2019, 133, 11–20. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.; Kang, Y.; Shi, M.; Yang, X.; Li, H.; Yu, H.; Wang, Y.; Qin, S. Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and Enhancing Iron Biofortification. Chem. Biol. Technol. Agric. 2022, 9, 79. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, S.; Huang, R.; Geng, Y.; Guo, L. The Effects of exogenous iron on the photosynthetic performance and transcriptome of rice under salt-alkali stress. Agronomy 2024, 14, 1253. [Google Scholar] [CrossRef]
- Mahawar, L.; Ramasamy, K.P.; Pandey, A.; Prasad, S.M. Iron deficiency in plants: An update on homeostasis and its regulation by nitric oxide and phytohormones. Plant Growth Regul. 2023, 100, 283–299. [Google Scholar] [CrossRef]
- Sadeghzadeh, B. A review of zinc nutrition and plant breeding. J. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef]
- Reshma, Z.; Meenal, K. Foliar application of biosynthesized zinc nanoparticles as a strategy for ferti-fortification by improving yield, zinc content and zinc use efficiency in amaranth. Heliyon 2022, 8, e10912. [Google Scholar] [CrossRef]
- Jalal, A.; Júnior, E.F.; Teixeira Filho, M.C.M. Interaction of Zinc Mineral Nutrition and Plant Growth-Promoting Bacteria in Tropical Agricultural Systems: A Review. Plants 2024, 13, 571. [Google Scholar] [CrossRef] [PubMed]
- Hams, S.; Mahmood, S.; Ishaque, W. Slow Mineral Nitrogen Release from Boron Coated Urea Improves Productivity of Sunflower Grown in Alkaline Soil. J. Soil Sci. Plant Nutr. 2025, 25, 7265–7280. [Google Scholar] [CrossRef]
- Cassim, B.M.A.R.; Lisboa, I.P.; Prestes, C.V.; Almeida, E.; Carvalho, H.W.P.; Lavres Junior, J.; Lasso, P.R.O.; Batista, M.A.; Otto, R. Development and characterization of enhanced urea through micronutrients and established technology addition. Agron. J. 2024, 116, 2573–2587. [Google Scholar] [CrossRef]
- Mirbolook, A.; Sadaghiani, M.R.; Keshavarz, P.; Alikhani, M. New Slow-Release Urea Fertilizer Fortified with Zinc for Improving Zinc Availability and Nitrogen Use Efficiency in Maize. ACS Omega 2023, 22, 45715–45728. [Google Scholar] [CrossRef]







| Chemical Attributes | Value | Physical Attributes | Value |
|---|---|---|---|
| Ca2+ (cmolc dm−3) | 1.45 | Sand (g kg−1) | 936.5 |
| Mg2+ (cmolc dm−3) | 1.30 | Silt (g kg−1) | 50.2 |
| Na+(cmolc dm−3) | 0.04 | Clay (g kg−1) | 13.3 |
| K+ (cmolc dm−3) | 0.13 | BD (g cm−3) | 1.56 |
| H+ (cmolc dm−3) | 0.00 | PD (g cm−3) | 2.71 |
| Al3+ (cmolc dm−3) | 0.00 | TP (%) | 42.43 |
| Fe (mg dm−3) | 2.3 | - | |
| Zn (mg dm−3) | 1.8 | - | |
| V (%) | 100.00 | --------------Soil moisture------------ | |
| CO (g kg−1) | 1.33 | 0.10 atm | 16.59 |
| SOM (g kg−1) | 2.30 | 0.33 atm | 12.87 |
| N-total (g kg−1) | 0.07 | 1.00 atm | 9.47 |
| P (mg dm−3) | 8.10 | 5.00 atm | 5.96 |
| pH H2O (1:2.5) | 6.05 | 10.00 atm | 5.64 |
| CE1:5 (µS cm−1) | 0.18 | 15.00 atm | 5.34 |
| Mean Square and F Test | |||||
|---|---|---|---|---|---|
| SV | DF | NH4+ | NO3− | NH4+ + NO3− | NH4+/NO3− |
| Treatments | 3 | 383,355.86 ** | 3871.20 ** | 549,686.81 ** | 64.40 ** |
| Error | 16 | 4064.72 | 20.02 | 1144.52 | 1.20 |
| CV (%) | 7.55 | 16.18 | 7.55 | 7.22 | 18.86 |
| Mean Square and F Test | ||||||
|---|---|---|---|---|---|---|
| SV | DF | LDM | CDM | RDM | SDM | TDM |
| Treatments | 3 | 206.189 ** | 466.609 ** | 510.660 ** | 1249.693 ** | 3276.553 ** |
| Error | 16 | 2.40 | 3.57 | 10.671 | 6.251 | 24.599 |
| CV (%) | 12.99 | 12.96 | 16.51 | 9.43 | 10.71 | |
| RDM/SDM | N-LDM | N-CDM | N-SDM | NUE | ||
| Treatments | 3 | 1.284 ** | 189,116.033 ** | 138,763.855 ** | 598,951.640 ** | 2.648 ** |
| Error | 16 | 0.024 | 6372.272 | 5018.015 | 10,106.729 | 0.0863 |
| CV (%) | 16.19 | 23.66 | 31.72 | 17.92 | 22.75 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, C.F.; Neves, R.d.S.; Arruda, T.F.d.L.; Costa, S.d.S.; Araújo, R.H.C.R.; Nascimento, R.d.; da Silva, A.P.; Sá, F.V.d.S.; Rocha, J.L.A. Urea Coated with Iron and Zinc Oxide Nanoparticles Reduces Nitrogen Leaching in Sandy Soil and Improves the Performance of Young Corn Plants. Nitrogen 2025, 6, 112. https://doi.org/10.3390/nitrogen6040112
de Oliveira CF, Neves RdS, Arruda TFdL, Costa SdS, Araújo RHCR, Nascimento Rd, da Silva AP, Sá FVdS, Rocha JLA. Urea Coated with Iron and Zinc Oxide Nanoparticles Reduces Nitrogen Leaching in Sandy Soil and Improves the Performance of Young Corn Plants. Nitrogen. 2025; 6(4):112. https://doi.org/10.3390/nitrogen6040112
Chicago/Turabian Stylede Oliveira, Cleiton Farias, Romildo da Silva Neves, Thiago Filipe de Lima Arruda, Sabrina dos Santos Costa, Railene Hérica Carlos Rocha Araújo, Ronaldo do Nascimento, Alexandre Paiva da Silva, Francisco Vaniés da Silva Sá, and Josinaldo Lopes Araujo Rocha. 2025. "Urea Coated with Iron and Zinc Oxide Nanoparticles Reduces Nitrogen Leaching in Sandy Soil and Improves the Performance of Young Corn Plants" Nitrogen 6, no. 4: 112. https://doi.org/10.3390/nitrogen6040112
APA Stylede Oliveira, C. F., Neves, R. d. S., Arruda, T. F. d. L., Costa, S. d. S., Araújo, R. H. C. R., Nascimento, R. d., da Silva, A. P., Sá, F. V. d. S., & Rocha, J. L. A. (2025). Urea Coated with Iron and Zinc Oxide Nanoparticles Reduces Nitrogen Leaching in Sandy Soil and Improves the Performance of Young Corn Plants. Nitrogen, 6(4), 112. https://doi.org/10.3390/nitrogen6040112

