Influence of Fertilizer Application Rates on Hydrologic Fluxes and Soil Health in Maize Cultivation in Southern Texas, United States
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Fertilizer Application
2.3. Soil Sensor Installation and Data Collection
2.4. Data Analysis
3. Results and Discussions
3.1. Impact of Fertilizer Application Rates on Electrical Conductivity (EC)
3.2. Impact of Fertilizer Application Rates on Soil Temperature (ST)
3.3. Impact of Fertilizer Application Rates on Soil Moisture Distribution
3.4. Relationship Between Soil Moisture, Rainfall, Soil Temperature, and Electrical Conductivity
3.5. Impact of Fertilizer Application Rates on Plant Growth and Productivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Pereira, P.; Brevik, E.; Trevisani, S. Mapping the environment. Sci. Total Environ. 2018, 610–611, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Scown, M.W.; Winkler, K.J.; Nicholas, K.A. Aligning research with policy and practice for sustainable agricultural land systems in Europe. Proc. Natl. Acad. Sci. USA 2019, 116, 4911–4916. [Google Scholar] [CrossRef] [PubMed]
- Stephens, E.C.; Jones, A.D.; Parsons, D. Agricultural systems research and global food security in the 21st century: An overview and roadmap for future opportunities. Agric. Syst. 2018, 163, 1–6. [Google Scholar] [CrossRef]
- Robinson, G.M. Global sustainable agriculture and land management systems. Geogr. Sustain. 2024, 5, 637–646. [Google Scholar] [CrossRef]
- Tikuye, B.G.; Tefera, G.W.; Gurau, S.; Ray, R.L. Assessing carbon stock and sequestration potential under land use and land cover dynamics in the Upper Blue Nile River Basin, Ethiopia. Carbon. Manag. 2025, 16, 2479516. [Google Scholar] [CrossRef]
- Ali, A.; Jabeen, N.; Farruhbek, R.; Chachar, Z.; Laghari, A.A.; Chachar, S.; Ahmed, N.; Ahmed, S.; Yang, Z. Enhancing nitrogen use efficiency in agriculture by integrating agronomic practices and genetic advances. Front. Plant Sci. 2025, 16, 1543714. [Google Scholar] [CrossRef]
- Cai, S.; Zhao, X.; Yan, X. Towards precise nitrogen fertilizer management for sustainable agriculture. Earth Crit. Zone 2025, 2, 100026. [Google Scholar] [CrossRef]
- Kagan, K.; Jonak, K.; Wolińska, A. The Impact of Reduced N Fertilization Rates According to the “Farm to Fork” Strategy on the Environment and Human Health. Appl. Sci. 2024, 14, 10726. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Song, X.; Liu, X.; Gao, H.; Liang, G.; Zhang, M.; Zheng, F.; Yang, P. Long-term nitrogen fertilization enhances crop yield potential in no-tillage systems through enhancing soil fertility. Resour. Conserv. Recycl. 2024, 206, 107622. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Pradhan, G.P. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment. In Nitrogen Fixation; IntechOpen: London, UK, 2019. [Google Scholar]
- Sun, J.; Li, W.; Li, C.; Chang, W.; Zhang, S.; Zeng, Y.; Zeng, C.; Peng, M. Effect of different rates of nitrogen fertilization on crop yield, soil properties and leaf physiological attributes in banana under subtropical regions of China. Front. Plant Sci. 2020, 11, 613760. [Google Scholar] [CrossRef] [PubMed]
- Gurau, S.; Imran, M.; Ray, R.L. Algae: A cutting-edge solution for enhancing soil health and accelerating carbon sequestration—A review. Environ. Technol. Innov. 2025, 37, 103980. [Google Scholar] [CrossRef]
- Osorio-Reyes, J.G.; Valenzuela-Amaro, H.M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Meléndez-Sánchez, E.R.; López-Arellanes, M.E.; Castañeda-Antonio, M.D.; Coronado-Apodaca, K.G.; Araújo, R.G.; Sosa-Hernández, J.E.; et al. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar. Drugs 2023, 21, 93. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Singh, S.K.; Modi, A.; Singh, P.K.; Yeka Zhimo, V.; Kumar, A. Chapter 4—Impacts of agrochemicals on soil microbiology and food quality. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 101–116. [Google Scholar]
- Tikuye, B.G.; Ray, R.L.; Gurau, S. Modeling carbon stock change and carbon dioxide emissions under different ecosystems in the Brazos River Basin, USA. Environ. Chall. 2025, 19, 101138. [Google Scholar] [CrossRef]
- Morell, F.; Lampurlanés, J.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. Soil. Tillage Res. 2011, 117, 76–84. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar] [CrossRef]
- Khambalkar, P.A.; Agrawal, S.; Dhaliwal, S.S.; Yadav, S.S.; Sadawarti, M.J.; Singh, A.; Yadav, I.R.; Yadav, K.; Shivansh; Prasad, D.; et al. Sustainable nutrient management balancing soil health and food security for future generations. Appl. Food Res. 2025, 5, 101087. [Google Scholar] [CrossRef]
- Țopa, D.-C.; Căpșună, S.; Calistru, A.-E.; Ailincăi, C. Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review. Agriculture 2025, 15, 998. [Google Scholar] [CrossRef]
- Ray, R.L.; Fares, A.; Risch, E. Effects of Drought on Crop Production and Cropping Areas in Texas. Agric. Environ. Lett. 2018, 3, 170037. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Parker, D.B.; Waldrip, H.M.; Casey, K.D.; Todd, R.W.; Willis, W.M.; Webb, K. Temporal nitrous oxide emissions from beef cattle feedlot manure after a simulated rainfall event. J. Environ. Qual. 2017, 46, 733–740. [Google Scholar] [CrossRef]
- Miller, J.; Beasley, B.; Drury, C.; Hao, X.; Larney, F. Soil properties following long-term application of stockpiled feedlot manure containing straw or wood-chip bedding under barley silage production. Can. J. Soil. Sci. 2014, 94, 389–402. [Google Scholar] [CrossRef]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; ACS Publications: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Kennett, D.J.; Prufer, K.M.; Culleton, B.J.; George, R.J.; Robinson, M.; Trask, W.R.; Buckley, G.M.; Moes, E.; Kate, E.J.; Harper, T.K.; et al. Early isotopic evidence for maize as a staple grain in the Americas. Sci. Adv. 2020, 6, eaba3245. [Google Scholar] [CrossRef] [PubMed]
- Adeoluwa, O.O.; Mutengwa, C.S.; Chiduza, C.; Tandzi, N.L. Nitrogen Use Efficiency of Quality Protein Maize (Zea mays L.) Genotypes. Agronomy 2022, 12, 1118. [Google Scholar] [CrossRef]
- Gheith, E.M.S.; El-Badry, O.Z.; Lamlom, S.F.; Ali, H.M.; Siddiqui, M.H.; Ghareeb, R.Y.; El-Sheikh, M.H.; Jebril, J.; Abdelsalam, N.R.; Kandil, E.E. Maize (Zea mays L.) Productivity and Nitrogen Use Efficiency in Response to Nitrogen Application Levels and Time. Front. Plant Sci. 2022, 13, 941343. [Google Scholar] [CrossRef]
- Irmak, S.; Mohammed, A.T.; Kukal, M.S. Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Growth, development and productivity. Agric. Water Manag. 2022, 263, 107457. [Google Scholar] [CrossRef]
- Szulc, P.; Krauklis, D.; Ambroży-Deręgowska, K.; Wróbel, B.; Niedbała, G.; Niazian, M.; Selwet, M. Response of Maize Varieties (Zea mays L.) to the Application of Classic and Stabilized Nitrogen Fertilizers-Nitrogen as a Predictor of Generative Yield. Plants 2023, 12, 600. [Google Scholar] [CrossRef]
- Tang, Z.; Cai, Y.; Xiang, Y.; Lu, J.; Sun, T.; Shi, H.; Liu, X.; Zhang, X.; Li, Z.; Zhang, F. Nitrogen nutritional diagnosis of summer maize (Zea mays L.) based on a hyperspectral data collaborative approach-evaluation of the estimation potential of three-dimensional spectral indices. Comput. Electron. Agric. 2025, 229, 109713. [Google Scholar] [CrossRef]
- Kindie, T.; Gbegbelegbe, S.; Cairns, J.E.; Bekele, S.; Prasanna, B.M.; Sonder, K.; Boote, K.; Makumbi, D.; Robertson, R. Maize systems under climate change in sub-Saharan Africa. Int. J. Clim. Change Strateg. Manag. 2015, 7, 247–271. [Google Scholar] [CrossRef]
- Meng, Q.; Cui, Z.; Yang, H.; Zhang, F.; Chen, X. Chapter Three—Establishing High-Yielding Maize System for Sustainable Intensification in China. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 148, pp. 85–109. [Google Scholar]
- ten Berge, H.F.M.; Hijbeek, R.; van Loon, M.P.; Rurinda, J.; Tesfaye, K.; Zingore, S.; Craufurd, P.; van Heerwaarden, J.; Brentrup, F.; Schröder, J.J.; et al. Maize crop nutrient input requirements for food security in sub-Saharan Africa. Glob. Food Secur. 2019, 23, 9–21. [Google Scholar] [CrossRef]
- Atav, V.; Gürbüz, M.; Kayalı, E.; Yalınkılıç, E. Optimizing Nitrogen Management in Maize (Zea mays L.) Using Urease and Nitrification Inhibitors. Commun. Soil Sci. Plant Anal. 2024, 56, 528–541. [Google Scholar] [CrossRef]
- Ojeniyi, K.; Ngonidzashe, C.; Devkota, K.; Madukwe, D. Optimizing split-fertilizer applications for enhanced maize yield and nutrient use efficiency in Nigeria’s Middle-belt. Heliyon 2024, 10, e37747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Lei, Q.; Luo, J.; Lindsey, S.; Zhang, J.; Zhai, L.; Wu, S.; Zhang, J.; Liu, X.; et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Sci. Total Environ. 2018, 618, 1173–1183. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Mechanisms of Nitrogen Use in Maize. Agronomy 2019, 9, 775. [Google Scholar] [CrossRef]
- Demari, G.; Carvalho, I.; Nardino, M.; Szareski, V.; Dellagostin, S.; da Rosa, T.C.; Follmann, D.; Monteiro, M.; Basso, J.; Pedó, T.; et al. Importance of nitrogen in maize production. Int. J. Curr. Res. 2016, 8, 36629–36634. [Google Scholar]
- Jiang, Y.; Li, H.; Ma, W.; Yu, W.; Chen, J.; Gao, Y.; Qi, G.; Yin, M.; Kang, Y.; Ma, Y.; et al. A meta-analysis of the effects of nitrogen fertilizer application on maize (Zea mays L.) yield in Northwest China. Front. Plant Sci. 2025, 15, 1485237. [Google Scholar] [CrossRef]
- Jiang, M.; Dong, C.; Bian, W.; Zhang, W.; Wang, Y. Effects of different fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Sci. Rep. 2024, 14, 6480. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, F.K.; Mucheru-Muna, M.W.; Diels, J.; Mugendi, D.N. Soil nutrients and crop yield response to conservation-effective management practices in the sub-humid highlands agro-ecologies of Kenya. Heliyon 2021, 7, e07156. [Google Scholar] [CrossRef]
- Paradelo, R.; Eden, M.; Martínez, I.; Keller, T.; Houot, S. Soil physical properties of a Luvisol developed on loess after 15 years of amendment with compost. Soil. Tillage Res. 2019, 191, 207–215. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef]
- Bian, H.; Li, C.; Zhu, J.; Xu, L.; Li, M.; Zheng, S.; He, N. Soil moisture affects the rapid response of microbes to labile organic C addition. Front. Ecol. Evol. 2022, 10, 857185. [Google Scholar] [CrossRef]
- Butcher, K.R.; Nasto, M.K.; Norton, J.M.; Stark, J.M. Physical mechanisms for soil moisture effects on microbial carbon-use efficiency in a sandy loam soil in the western United States. Soil. Biol. Biochem. 2020, 150, 107969. [Google Scholar] [CrossRef]
- Hao, Y.; Mao, J.; Bachmann, C.M.; Hoffman, F.M.; Koren, G.; Chen, H.; Tian, H.; Liu, J.; Tao, J.; Tang, J.; et al. Soil moisture controls over carbon sequestration and greenhouse gas emissions: A review. npj Clim. Atmos. Sci. 2025, 8, 16. [Google Scholar] [CrossRef]
- Qu, R.; Liu, G.; Yue, M.; Wang, G.; Peng, C.; Wang, K.; Gao, X. Soil temperature, microbial biomass and enzyme activity are the critical factors affecting soil respiration in different soil layers in Ziwuling Mountains, China. Front. Microbiol. 2023, 14, 1105723. [Google Scholar] [CrossRef] [PubMed]
- Zifcakova, L. Factors Affecting Soil Microbial Processes. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer: Singapore, 2020; pp. 439–461. [Google Scholar]
- Kim, H.N.; Park, J.H. Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Othaman, N.C.; Isa, M.M.; Ismail, R.; Ahmad, M.; Hui, C. Factors that affect soil electrical conductivity (EC) based system for smart farming application. AIP Conf. Proc. 2020, 2203, 020055. [Google Scholar] [CrossRef]
- Omar, S.; Abd Ghani, R.; Khaeim, H.; Haj Sghaier, A.; Márton, J. The effect of nitrogen fertilisation on yield and quality of maize (Zea mays L.). Acta Aliment. 2022, 51, 249–258. [Google Scholar] [CrossRef]
- Su, W.; Ahmad, S.; Ahmad, I.; Han, Q. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ 2020, 8, e10291. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Gao, Q.; Yan, L. Nitrogen Application Effect on Maize Yield, NH3, and N2O Emissions in Northeast China by Meta-Analysis. Agronomy 2023, 13, 1479. [Google Scholar] [CrossRef]
- Jalpa, L.; Mylavarapu, R.S.; Hochmuth, G.; Wright, A.; van Santen, E. Recovery efficiency of applied and residual nitrogen fertilizer in tomatoes grown on sandy soils using the 15N technique. Sci. Hortic. 2021, 278, 109861. [Google Scholar] [CrossRef]
- Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. USA 2013, 110, 18185–18189. [Google Scholar] [CrossRef] [PubMed]
- Kawalec, P.; Wierzchosławski, R.; Skibniewski, M.; Callebaut, B.; van den hoven, J.; Poel, I.; Guldenmund, F.; Doula, M.; Hulstijn, J.; Argyriou, N. Social Responsibility and Science in Innovation Economy; Wydawnictwo KUL: Lublin, Poland, 2016. [Google Scholar]
- Verloop, J.; Boumans, L.; Van Keulen, H.; Oenema, J.; Hilhorst, G.; Aarts, H.; Sebek, L. Reducing nitrate leaching to groundwater in an intensive dairy farming system. Nutr. Cycl. Agroecosystems 2006, 74, 59–74. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil. Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Yadav, M.R.; Kumar, S.; Lal, M.K.; Kumar, D.; Kumar, R.; Yadav, R.K.; Kumar, S.; Nanda, G.; Singh, J.; Udawat, P.; et al. Mechanistic Understanding of Leakage and Consequences and Recent Technological Advances in Improving Nitrogen Use Efficiency in Cereals. Agronomy 2023, 13, 527. [Google Scholar] [CrossRef]
- Li, W.; Xie, L.; Zhao, C.; Hu, X.; Yin, C. Nitrogen Fertilization Increases Soil Microbial Biomass and Alters Microbial Composition Especially Under Low Soil Water Availability. Microb. Ecol. 2023, 86, 536–548. [Google Scholar] [CrossRef]
- Ray, R.L.; Ibironke, A.; Kommalapati, R.; Fares, A. Quantifying the Impacts of Land-Use and Climate on Carbon Fluxes Using Satellite Data across Texas, U.S. Remote Sens. 2019, 11, 1733. [Google Scholar] [CrossRef]
- Banner, J.L.; Jackson, C.S.; Yang, Z.-L.; Hayhoe, K.; Woodhouse, C.; Gulden, L.; Jacobs, K.; North, G.; Leung, R.; Washington, W.; et al. Climate change impacts on Texas water: A white paper assessment of the past, present and future and recommendations for action. Tex. Water J. 2010, 1, 1–19. [Google Scholar] [CrossRef]
- Cominelli, S.; Rivera, L.D.; Brown, W.G.; Ochsner, T.E.; Patrignani, A. Calibration of TEROS 10 and TEROS 12 electromagnetic soil moisture sensors. Soil. Sci. Soc. Am. J. 2024, 88, 2104–2122. [Google Scholar] [CrossRef]
- Kelley, B.; Ali, N.; Dong, Y. Methods to correct temperature-induced changes of soil moisture sensors to improve accuracy. MethodsX 2025, 14, 103100. [Google Scholar] [CrossRef] [PubMed]
- Mirzakhaninafchi, H.; Mishra, I.M.; Nafchi, A.M. Study on soil nitrogen and electrical conductivity relationship for site-specific nitrogen application. In Proceedings of the 2017 ASABE Annual International Meeting, Spokane, WA, USA, 16–19 July 2017; p. 1. [Google Scholar]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M.; Menzies, N.W. The effect of salinity on plant-available water. Plant Soil. 2017, 418, 477–491. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Jia, H.; Niu, B.; Sheng, Y.; Shi, F. Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China. Geoderma 2017, 308, 93–103. [Google Scholar] [CrossRef]
- Xiukang, W.; Zhanbin, L.; Yingying, X. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar] [CrossRef]
- Convey, P.; Coulson, S.; Worland, M.; Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 2018, 41, 1587–1605. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, D.; Wang, X.; Han, F.; Li, Y.; Wu, X.; Ma, S. Horizontal heat impact of urban structures on the surface soil layer and its diurnal patterns under different micrometeorological conditions. Sci. Rep. 2016, 6, 18790. [Google Scholar] [CrossRef]
- Naud, C.M.; Posselt, D.J.; Van Den Heever, S.C. Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts. J. Clim. 2012, 25, 5135–5151. [Google Scholar] [CrossRef]
- Rahman, M.A.; Dervishi, V.; Moser-Reischl, A.; Ludwig, F.; Pretzsch, H.; Rötzer, T.; Pauleit, S. Comparative analysis of shade and underlying surfaces on cooling effect. Urban. For. Urban. Green. 2021, 63, 127223. [Google Scholar] [CrossRef]
- Wang, Q.; Li, F.; Zhao, L.; Zhang, E.; Shi, S.; Zhao, W.; Song, W.; Vance, M.M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil. 2010, 337, 325–339. [Google Scholar] [CrossRef]
- Shang, F.; Ren, S.; Yang, P.; Chi, Y.; Xue, Y. Effects of different irrigation water types, N fertilizer types, and soil moisture contents on N2O emissions and N fertilizer transformations in soils. Water Air Soil. Pollut. 2016, 227, 225. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Fertigation and carboxymethyl cellulose applications enhance water-use efficiency, improving soil available nutrients and maize yield in salt-affected soil. Sustainability 2023, 15, 9602. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, N.; Zeng, H.; Wang, W. Effects of soil depth and plant–soil interaction on microbial community in temperate grasslands of northern China. Sci. Total Environ. 2018, 630, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ouyang, G.; Luo, X.; Luo, J.; Hu, L.; Fu, M. Moisture content, pore-water pressure and wetting front in granite residual soil during collapsing erosion with varying slope angle. Geomorphology 2020, 362, 107210. [Google Scholar] [CrossRef]
Fertilizer | Rate (kg/ha) | Residual (kg/ha) | Applied (kg/ha) |
---|---|---|---|
Monoammonium Phosphate | 112 | 72 | 40 |
Muriate of potash | 269 | 291 | 0 |
Urea | T1 (241) | 54 | 187 |
T2 (269) | 215 | ||
T3 (297) | 243 |
p Value | ||
---|---|---|
Parameters | Depth 1 | Depth 2 |
SM | <0.05 | <0.05 |
ST | 0.983 | 0.552 |
EC | 0.251 | <0.05 |
Mean | Std. Deviation | |||
---|---|---|---|---|
Parameters | Depth 1 | Depth 2 | Depth 1 | Depth 2 |
SM (T1/T2/T3) | 0.13/0.14/0.15 | 0.12/0.15/0.15 | 0.02/0.02/0.03 | 0.02/0.03/0.03 |
ST (T1/T2/T3) | 30.06/29.91/29.69 | 29.28/29.15/29.13 | 1.90/1.99/1.82 | 1.67/1.69/1.67 |
EC (T1/T2/T3) | 0.65/0.51/0.48 | 0.11/0.22/0.48 | 0.49/0.42/0.29 | 0.12/0.09/0.22 |
Plant’s Parameters | p Value |
---|---|
Height of maize plant | 0.845 |
Diameter of maize plant) | 0.121 |
Productivity of wet grain | 0.280 |
Productivity of dry grain | 0.542 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deegala, B.; Gurau, S.; Ray, R.L. Influence of Fertilizer Application Rates on Hydrologic Fluxes and Soil Health in Maize Cultivation in Southern Texas, United States. Nitrogen 2025, 6, 75. https://doi.org/10.3390/nitrogen6030075
Deegala B, Gurau S, Ray RL. Influence of Fertilizer Application Rates on Hydrologic Fluxes and Soil Health in Maize Cultivation in Southern Texas, United States. Nitrogen. 2025; 6(3):75. https://doi.org/10.3390/nitrogen6030075
Chicago/Turabian StyleDeegala, Bhagya, Sanjita Gurau, and Ram L. Ray. 2025. "Influence of Fertilizer Application Rates on Hydrologic Fluxes and Soil Health in Maize Cultivation in Southern Texas, United States" Nitrogen 6, no. 3: 75. https://doi.org/10.3390/nitrogen6030075
APA StyleDeegala, B., Gurau, S., & Ray, R. L. (2025). Influence of Fertilizer Application Rates on Hydrologic Fluxes and Soil Health in Maize Cultivation in Southern Texas, United States. Nitrogen, 6(3), 75. https://doi.org/10.3390/nitrogen6030075