Sustainable Treatment of Landfill Leachate Using Sugar Lime Sludge for Irrigation and Nitrogen Recovery
Abstract
:1. Introduction
- Young leachate (<5 years): high biodegradable organic load, low pH;
- Intermediate leachate (5–10 years): decreased biodegradability;
- Stabilized leachate (>10 years): complex and refractory organics with high molecular weight.
1.1. Key Pollutants in Landfill Leachate
1.1.1. Xenobiotic Organic Compounds (XOCs)
1.1.2. Dissolved Organic Matter (DOM)
1.1.3. Heavy Metals
1.1.4. Inorganic Macro-Compounds
1.2. Treatment Methods for Landfill Leachate
2. Materials and Methods
2.1. Materials
2.1.1. Sugar Lime Sludge
2.1.2. Leachate from the Marrakech Landfill
2.2. Methods
Concentrations of Sugar Lime Sludge and Treatment Durations:
2.3. Bacteriological Analysis
2.3.1. Dilution Preparation
2.3.2. Enumeration of Total Aerobic Mesophilic Flora
2.3.3. Enumeration of Fecal Streptococci
2.3.4. Enumeration of Total Coliforms
2.3.5. Enumeration of Fecal Coliforms
2.3.6. Composting of the Decantate and Nitrogen Recovery
2.3.7. Analysis on Supernatants and Decantates
pH Measurements:
Electrical Conductivity:
Phytotoxicity Assessment:
2.3.8. Statistical Analysis
3. Results
3.1. Physico-Chemical Characteristics of Supernatants
3.1.1. pH Values After Leachate Treatment with Three Concentrations of Sugar Lime Sludge
3.1.2. Electrical Conductivity Values After Leachate Treatment with Three Concentrations of Sugar Lime Sludge
3.2. Organic Matter Content in the Decantate After Leachate Treatment
3.3. Phytotoxicity Assessment of Treated Leachate for Irrigation Potential
3.3.1. Germination Percentage
3.3.2. Germination Index
3.4. Microbiological Results
3.4.1. Raw Leachate
3.4.2. Fecal Streptococci After Treatment with Sugar Lime Sludge
3.5. Composting of Decantate with Green Waste and Assessment of Compost Maturity
3.6. Evolution of Total Nitrogen in the Decantate After Treatment and During Composting
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baun, A.; A Reitzel, L.; Ledin, A.; Christensen, T.H.; Bjerg, P.L. Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark). J. Contam. Hydrol. 2003, 65, 269–291. [Google Scholar] [CrossRef] [PubMed]
- Bruna, A.; STATISTA. Global Waste Generation—Statistics & Facts. STATISTA. Available online: https://www.statista.com/topics/4983/waste-generation-worldwide/#topicOverview (accessed on 18 December 2023).
- Shafy, H.I.A.; Ibrahim, A.M.; Al-Sulaiman, A.M.; Okasha, R.A. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Eng. J. 2024, 15, 102293. [Google Scholar] [CrossRef]
- Hosseini Beinabaj, S.M.; Heydariyan, H.; Mohammad Aleii, H.; Hosseinzadeh, A. Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon 2023, 9, e13017. [Google Scholar] [CrossRef] [PubMed]
- Nuansawan, N.; Witthayaphirom, C.; Sawasdee, A.; Chiemchaisri, C.; Shoda, M. Removals of endocrine disrupting compounds during landfill leachate treatment in two-stage aerobic sequential batch reactor: Effect of Alcaligenes faecalis no.4 bio-augmentation. Emerg. Contam. 2023, 9, 100223. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Selvam, A. Reduction of indicator and pathogenic microorganisms in pig manure through fly ash and lime addition during alkaline stabilization. J. Hazard. Mater. 2009, 169, 882–889. [Google Scholar] [CrossRef]
- Zawierucha, I.; Kozlowski, C.; Malina, G. Removal of toxic metal ions from landfill leachate by complementary sorption and transport across polymer inclusion membranes. Waste Manag. 2013, 33, 2129–2136. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Xu, T.; Ma, J.; Sun, Q.; Rong, G.; Ren, B. Corrosion characteristics of concrete by landfill leachates of different ages. Case Stud. Constr. Mater. 2024, 20, e03242. [Google Scholar] [CrossRef]
- Koffi, S.; Prasad, S.B.; Agbotsou, K.E.; Souley, H.S.; Mudigandla, R. Characteristics of landfill leachate and leachate treatment by biological and advanced coagulation process: Feasibility and effectiveness—An overview. Waste Manag. Bull. 2024, 2, 181–198. [Google Scholar]
- Marek, M.; Płaza, G.A.; Nałęcz-Jawecki, G.; Ulfig, K.; Markowska-Szczupak, A. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 2011, 82, 1017–1023. [Google Scholar]
- El-Saadony, M.T.; Saad, A.M.; El-Wafai, N.A.; Abou-Aly, H.E.; Salem, H.M.; Soliman, S.M.; El-Mageed, T.A.A.; Elrys, A.S.; Selim, S.; El-Hack, M.E.A.; et al. Hazardous wastes and management strategies of landfill leachates: A comprehensive review. Environ. Technol. Innov. 2023, 31, 103150. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, H.; Li, X.; Qi, D.; Liu, R.; Kang, G.; Liu, J.; Li, N.; Zhang, S.; Hu, S. Pathogens and antibiotic resistance genes during the landfill leachate treatment process: Occurrence, fate, and impact on groundwater. Sci. Total Environ. 2023, 903, 165925. [Google Scholar] [CrossRef] [PubMed]
- Viraj, G.; Phillips, A.J.; Zanoletti, A.; Rajapaksha, A.U.; Vithanage, M.; Di Maria, F.; Pivato, A.; Korzeniewska, E.; Bontempi, E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. Sci. Total Environ. 2024, 912, 169026. [Google Scholar]
- Seibert, D.; Quesada, H.; Bergamasco, R.; Borba, F.H.; Pellenz, L. Presence of endocrine disrupting chemicals in sanitary landfill leachate, its treatment and degradation by Fenton based processes: A review. Process Saf. Environ. Prot. 2019, 131, 255–267. [Google Scholar] [CrossRef]
- Belmakki, M.; Bartali, E.H.; Xiaoru, H.; Anne-Belinda, B. Identification and characterization of organic waste in Morocco, an important step towards the valorization of waste. Rev. Mar. Sci. Agron. Vét. 2015, 3, 37–45. [Google Scholar]
- Renou, S.; Givaudan, J.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Li, Y.-J.; Yuan, Y.; Tan, W.-B.; Xi, B.-D.; Wang, H.; Hui, K.-L.; Chen, J.-B.; Zhang, Y.-F.; Wang, L.-F.; Li, R. Antibiotic resistance genes and heavy metals in landfill: A review. J. Hazard. Mater. 2024, 464, 132395. [Google Scholar] [CrossRef]
- Wang, Q.; Ko, J.H.; Liu, F.; Xu, Q. Leaching characteristics of heavy metals in MSW and bottom ash co-disposal landfills. J. Hazard. Mater. 2021, 416, 126042. [Google Scholar] [CrossRef]
- Ishchenko, V. Heavy metals in municipal waste: The content and leaching ability by wasre fraction. J. Environ. Sci. Health, Part A 2019, 54, 1448–1456. [Google Scholar] [CrossRef]
- Mobaligh, M.; Meddich, A.; Imziln, B.; Fares, K. The Use of Phosphate Washing Sludge to Recover by Composting the Leachate from the Controlled Landfill. Processes 2021, 9, 1735. [Google Scholar] [CrossRef]
- Mobaligh, M.; Saadani Hassani, O.; Ait Rahou, Y.; Fares, K. Impact of the Addition of Sugar Beet Lime Sludge on the Composting of Argan Oil By-Products. Catal. Res. 2023, 3, 17. [Google Scholar] [CrossRef]
- Yasamani Masouleh, S.; Mozaffarian, M.; Dabir, B. Landfill leachate treatment using sequential natural zeolite adsorption and peroxymonosulfate activated by UV/Fe2+ system: Effects of main operating parameters and application of fluorescence EEM to monitor organic matters’ transformation. J. Environ. Chem. Eng. 2024, 12, 113457. [Google Scholar] [CrossRef]
- Lavudya, S. Treatment of landfill leachate using advanced oxidation process and struvite precipitation processes. Mater. Today Proc. 2023, 76, 206–211. [Google Scholar] [CrossRef]
- Viegas, C.; Nobre, C.; Mota, A.; Vilarinho, C.; Gouveia, L.; Gonçalves, M. A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae. J. Environ. Chem. Eng. 2021, 9, 105187. [Google Scholar] [CrossRef]
- Chen, Q.; Lü, F.; Zhang, H.; Han, Y.; He, P. Dissolved organic nitrogen is a key to improving the biological treatment potential of landfill leachate. Water Res. 2024, 254, 121403. [Google Scholar] [CrossRef]
- del Amo, E.H.; Poblete, R.; Sánchez, O.; Maldonado, M.I. Biological treatment and microbial composition of landfill leachate using a compost process in an airlift bioreactor. J. Clean. Prod. 2023, 415, 137748. [Google Scholar] [CrossRef]
- De Carluccio, M.; Sabatino, R.; Eckert, E.M.; Di Cesare, A.; Corno, G.; Rizzo, L. Co-treatment of landfill leachate with urban wastewater by chemical, physical and biological processes: Fenton oxidation preserves autochthonous bacterial community in the activated sludge process. Chemosphere 2023, 295, 137578. [Google Scholar] [CrossRef]
- Huang, Y.; Guan, Z.; Xia, D. Effective remediation of leachate concentrate by peroxymonosulfate in a catalytic ceramic membrane filtration process: Performance and mechanism. Waste Manag. 2023, 172, 117–126. [Google Scholar] [CrossRef]
- Li, Y.; Yi, Q.; Wang, D.; Wu, Z.; Wang, Z. Efficient treatment of landfill leachate using an electrochemical ceramic membrane filtration system: Chlorine-mediated oxidation. Chem. Eng. J. 2022, 450, 138102. [Google Scholar] [CrossRef]
- Saleem, M.; Spagni, A.; Alibardi, L.; Bertucco, A.; Lavagnolo, M.C. Assessment of dynamic membrane filtration for biological treatment of old landfill leachate. J. Environ. Manag. 2018, 213, 27–35. [Google Scholar] [CrossRef]
- Bai, F. Landfill leachate treatment through the combination of genetically engineered bacteria Rhodococcus erythropolis expressing Nirs and AMO and membrane filtration processes. Environ. Pollut. 2020, 263, 114061. [Google Scholar] [CrossRef]
- Kundu, A. Optimization and kinetic analysis of electrocoagulation-assisted adsorption for treatment of young landfill leachate. J. Environ. Manag. 2024, 366, 121779. [Google Scholar] [CrossRef]
- Ameli, F.; Hashemi, H.; Samaei, M.R.; Asgari, E.; Fazli, M.M. Enhanced reducing leachate pollution index through electrocoagulation using response surface methodology. Heliyon 2024, 10, e38134. [Google Scholar] [CrossRef] [PubMed]
- Pinedo-Hernandez, J.; Marrugo-Negrete, J.; Pérez-Espitia, M.; Durango-Hernández, J.; Enamorado-Montes, G.; Navarro-Frómeta, A. A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate. J. Environ. Manag. 2023, 351, 119681. [Google Scholar] [CrossRef] [PubMed]
- Parthenidis, P.; Evgenidou, E.; Lambropoulou, D. Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Water Process Eng. 2023, 53, 103768. [Google Scholar] [CrossRef]
- Xu, L.; Siracusa, G.; Di Gregorio, S.; Yuan, Q. COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs). Process Saf. Environ. Prot. 2018, 120, 278–285. [Google Scholar] [CrossRef]
- Rocha, E.M.R.; Vilar, V.; Fonseca, A.; Saraiva, I.; Boaventura, R. Landfill leachate treatment by solar-driven AOPs. Solar Energy 2011, 85, 46–56. [Google Scholar] [CrossRef]
- Bonu, R.; Anand, N.; Palani, S.G. Impact of thermal pre-treatment on anaerobic co-digestion of sewage sludge and landfill leachate. Mater. Today Proc. 2023, 2, 99–103. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Ji, Z.; Cui, J.; Pei, Y. Solidification/stabilization of organic matter and ammonium in high-salinity landfill leachate concentrate using one-part fly ash-based geopolymers. J. Environ. Chem. Eng. 2023, 11, 109379. [Google Scholar] [CrossRef]
- Zucconi, F. Evaluating toxicity of immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Santos, J.M.; Amaral, L.M.; Martinho, G. Effects of landfill age, climate, and size on leachate from urban waste landfills in Portugal: A statistics and machine learning analysis. Waste Manag. 2023, 172, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Ministère de la Transition Energétique et du Développement Durable. Normes Qualité des Eaux usées Épurées Detinees a L’irrigation. Available online: https://www.environnement.gov.ma/fr/lois-et-reglementations/normes (accessed on 28 January 2024).
- Acarer, S.A. Microplastics in landfill leachate: Sources, abundance, characteristics, remediation approaches and future perspective. Desalination Water Treat. 2024, 319, 100445. [Google Scholar] [CrossRef]
Treatment Method | Description | References |
---|---|---|
Physicochemical Methods | Involves chemical reactions, precipitation, and adsorption to remove contaminants | [22,23,24] |
Biological Treatment | Utilizes microorganisms to degrade organic matter and pollutants in leachate | [25,26,27] |
Membrane Filtration | Indicates the total ion concentration in the leachate | [28,29,30,31] |
Electrocoagulation | Measures Biodegradable organic content, assessing treatability | [32,33,34] |
Advanced Oxidation Processes (AOPs) | Reflects the concentration of dissolved minerals and salts | [35,36,37] |
Thermal Treatment | Determines toxic metals like lead, cadmium, zinc, and copper | [38] |
Solidification/Stabilization | Assesses harmful organic pollutants | [39] |
Elements | Value |
---|---|
Humidity (%) | 10.95 ± 0.09 |
OM (%DS) | 7.78 ± 0.27 |
OTC (%DS) | 4.32 ± 0.15 |
TNK (g/100 g DS) | 0.20 ± 0.4 × 10−2 |
C/N | 16 ± 0.18 |
pH | 8.6 ± 0.03 |
Pb (mg/kg DS) | Trace |
Cr (mg/kg DS) | 32.9 ± 0.13 × 10−2 |
Cu (mg/kg DS) | 1.35 ± 0.06 × 10−2 |
Cd (mg/kg DS) | Trace |
Zn (mg/kg DS) | 16.62 ± 0.06 × 10−2 |
Ca (% total mineral) | 79.5 |
Parameter | Value |
---|---|
pH | 8.48 ± 0.02 |
BOD (mg O2/L) | 1400 ± 0.0 |
COD (mg O2/L) | 25,750 ± 403.7 |
BOD5/COD Ratio | 0.05 |
Ni (mg/L) | 0.07 ± 0.01 |
Cu (mg/L) | 0 |
Lead (Pb) (mg/L) | 0.01 ± 0.0 |
Zinc (Zn) (mg/L) | 0.04 ± 0.0 |
Chromium (Cr) (mg/L) | 0.07 ± 0.0 |
Arsenic (As) (mg/L) | 0.5 ± 0.1 |
Estimation | Standard Error | t | p | |
---|---|---|---|---|
L C1D1—Raw leachate | 0.424 | 0.0480 | 8.84 | <0.001 |
L C2D1—Raw leachate | 0.276 | 0.0480 | 5.76 | <0.001 |
L C3D1—Raw leachate | 0.213 | 0.0480 | 4.45 | <0.001 |
L C1D2—Raw leachate | 0.331 | 0.0480 | 6.90 | <0.001 |
L C2D2—Raw leachate | 0.328 | 0.0480 | 6.84 | <0.001 |
L C3D2—Raw leachate | 0.300 | 0.0480 | 6.26 | <0.001 |
Microorganisms | CFU/mL |
---|---|
Fecal streptococci | 40,000 |
Fecal coliforms | 0 |
Total coliforms | 0 |
Total mesophilic flora | 1,666,666.7 |
Sample | CFU/mL | Reduction (%) |
---|---|---|
Raw leachate | 40,000 | - |
C1D1 | 346 | 99.13 |
C2D1 | 1966 | 95.08 |
C3D1 | 1893 | 95.27 |
C1D2 | 1016 | 97.46 |
C2D2 | 1670 | 95.83 |
C3D2 | 2760 | 93.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baganna, T.; Choukri, A.; Fares, K. Sustainable Treatment of Landfill Leachate Using Sugar Lime Sludge for Irrigation and Nitrogen Recovery. Nitrogen 2025, 6, 37. https://doi.org/10.3390/nitrogen6020037
Baganna T, Choukri A, Fares K. Sustainable Treatment of Landfill Leachate Using Sugar Lime Sludge for Irrigation and Nitrogen Recovery. Nitrogen. 2025; 6(2):37. https://doi.org/10.3390/nitrogen6020037
Chicago/Turabian StyleBaganna, Tilila, Assmaa Choukri, and Khalid Fares. 2025. "Sustainable Treatment of Landfill Leachate Using Sugar Lime Sludge for Irrigation and Nitrogen Recovery" Nitrogen 6, no. 2: 37. https://doi.org/10.3390/nitrogen6020037
APA StyleBaganna, T., Choukri, A., & Fares, K. (2025). Sustainable Treatment of Landfill Leachate Using Sugar Lime Sludge for Irrigation and Nitrogen Recovery. Nitrogen, 6(2), 37. https://doi.org/10.3390/nitrogen6020037