Impact of Nitrogen Fertilization on Rosemary: Assessment of Physiological Traits, Vegetation Indices, and Environmental Resource Use Efficiency
Abstract
:1. Introduction
- To determine the effect of N application on various morphological, physiological, and agronomic characteristics of rosemary.
- To evaluate different vegetation indices under varying N levels for improved N management.
- To assess the impact of N management on environmental resource utilization in rosemary cultivation.
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Soil Sampling and Analysis
2.3. Measurements
2.4. Morphological Characteristics
2.4.1. Plant Height
2.4.2. Leaf Area Index (LAI)
2.5. Physiological Characteristics
2.5.1. Chlorophyll Content (SPAD Readings)
2.5.2. Photosynthetic Efficiency
2.5.3. Gas Exchange Parameters
2.6. Vegetation Indices
2.7. Dry Biomass and Essential Oil Content
2.7.1. Dry Biomass
2.7.2. Essential Oil Content
2.8. Radiation Use Efficiency (RUE)
2.9. Water Use Efficiency (WUE)
2.10. Agronomic Efficiency and Productivity
2.11. Statistical Analysis
3. Results
3.1. Morphological Characteristics
3.1.1. Plant Height
3.1.2. Leaf Area Index
3.2. Physiological Characteristics
3.2.1. Chlorophyll Meter Readings (CMR)
3.2.2. Photosynthetic Efficiency
3.2.3. Assimilation Rate and Gas Exchange Parameters
3.3. Dry Matter Yield and Essential Oil Content
3.4. Radiation Use Efficiency (RUE)
3.5. Water Use Efficiency
3.6. Agronomic Efficiency (AE) and Productivity PFP (Partial Factor Productivity)
3.7. Vegetation Indices
3.8. Correlation Analysis of the Studied Parameters
4. Discussion
4.1. Morphological Characteristics
4.1.1. Plant Height
4.1.2. Leaf Area Index
4.2. Physiological Characteristics
4.2.1. Chlorophyll Meter Readings (CMR)
4.2.2. Photosynthetic Efficiency
4.2.3. Assimilation Rate and Gas Exchange Parameters
4.3. Dry Matter Yield and Relative Dry Matter Yield
4.4. Essential Oil Concentration and Essential Oil Yield
4.5. Radiation Use Efficiency (RUE)
4.6. Water Use Efficiency (WUE)
4.7. Agronomic Efficiency (AE) and Partial Factor Productivity (PFP)
4.8. Vegetation Indices
4.9. Correlation Coefficients
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CM | Chlorophyll meter. |
RCM | Relative chlorophyll meter. |
LAI | Leaf area index. |
E | Evapotranspiration. |
gs | Stomatal conductance. |
A | Assimilation rate. |
A/E | Instantaneous water use efficiency. |
NDVI | Normalized difference vegetation index. |
MSAVI2 | Modified Soil Adjusted Vegetation Index. |
fPAR | Fraction of absorbed photosynthetically active radiation. |
RVI | Ratio Vegetation Index. |
EVI2 | Enhanced vegetation index. |
WUE | Water use efficiency. |
RUE | Radiation use efficiency. |
AE | Agronomic efficiency. |
PFP | Partial factor productivity. |
References
- Goliaris, A. Research and production of medicinal and aromatic plants in Greece. Med. Plant Rep. 1997, 4, 1–10. [Google Scholar]
- Aziz, E.; Batool, R.; Akhtar, W.; Shahzad, T.; Malik, A.; Shah, M.A.; Iqbal, S.; Rauf, A.; Zengin, G.; Bouyahya, A.; et al. Rosemary species: A review of phytochemicals, bioactivities and industrial applications. S. Afr. J. Bot. 2002, 151 Pt B, 3–180. [Google Scholar] [CrossRef]
- Amar, S.; Abid, A.; Hafiz, M.A.; Jadhav, B.; Jaspreet, K.; Farhan, S.; Muhammad, W.; Ali, I.; Hafiz, J.; Muhammad, S.R.; et al. Nutritional composition, phytochemical profile, therapeutic potentials, and food applications of rosemary: A comprehensive review. J. Food Compos. Anal. 2024, 1350, 1066880, ISSN 0889-15750. [Google Scholar] [CrossRef]
- Mansinhos, I.; Goncalves, S.; Romano, A. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: A review. Front. Plant Sci. 2024, 15, 1370810. [Google Scholar] [CrossRef]
- Moore, J.; Yousef, M.; Tsiani, E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients 2016, 8, 731. [Google Scholar] [CrossRef]
- Xie, J.; VanAlstyne, P.; Uhlir, A.; Yang, X. A review on rosemary as a natural antioxidation solution. Eur. J. Lipid Sci. Technol. 2017, 119, 1600439. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Cravotto, G.; Boffa, L.; Genzini, L.; Garella, D. Phytotherapeutics: An evaluation of the potential of 1000 plants. J. Clin. Pharm. Ther. 2010, 35, 11–48. [Google Scholar] [CrossRef]
- Yu, X.C.; Keitel, Y.; Zhang, A.; Njugi Wangeci, F.; Dijkstra, A. Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize. Agric. Ecosyst. Environ. 2022, 338, 108089. [Google Scholar] [CrossRef]
- Mălinaş, A.; Vidican, R.; Rotar, I.; Mălinaş, C.; Moldovan, C.M.; Proorocu, M. Current Status and Future Prospective for Nitrogen Use Efficiency in Wheat (Triticum aestivum L.). Plants 2022, 110, 217. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Shao, Q.; Young, M.D.; Zhang, F.; De Vries, W. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nat. Commun. 2023, 14, 5747. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, G.; Gastal, F. Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen use efficiency. In Crop Physiology: Applications for Genetic Improvement and Agronomy; Sadras, V.O., Calderini, D.F., Eds.; Elsevier: Burlington, MA, USA, 2009; pp. 171–211. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Bustamante, M.Á.; Michelozzi, M.; Barra Caracciolo, A.; Grenni, P.; Verbokkem, J.; Geerdink, P.; Safi, C.; Nogues, I. Effects of Soil Fertilization on Terpenoids and Other Carbon-Based Secondary Metabolites in Rosmarinus officinalis Plants: A Comparative Study. Plants 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Heikal, A.A.M.; Helmy, S.S. Effect of nitrogen fertilization and ascorbic acid on growth, essential oil and chemical composition of rosemary plant. Zagazig J. Agric. Res. 2017, 45, 87–103. [Google Scholar] [CrossRef]
- Singh, M.; Ganesha Rao, R.S.; Ramesh, S. Effects of N and K on growth, herbage, oil yield and nutrient uptake patterns in rosemary (Rosmarinus officinalis L.) under semi-arid tropical conditions. J. Hortic. Sci. Biotechnol. 2007, 82, 414–419. [Google Scholar] [CrossRef]
- Liu, P.; Shi, R.; Gao, W. Estimating leaf chlorophyll contents by combining multiple spectral indices with an artificial neural network. Earth Sci. Inform. 2018, 110, 147–156. [Google Scholar] [CrossRef]
- Ali, A.M.; Salem, H.M. Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review. Nitrogen 2024, 50, 828–856. [Google Scholar] [CrossRef]
- Gao, C.; Li, H.; Wang, J.; Zhang, X.; Huang, K.; Song, X.; Yang, W.; Feng, M.; Xiao, L.; Zhao, Y.; et al. Combined use of spectral resampling and machine learning algorithms to estimate soybean leaf chlorophyll. Comput. Electron. Agric. 2024, 218, 108675. [Google Scholar] [CrossRef]
- de Oliveira Maia, F.C.; Bufon, V.B.; Leão, T.P. Vegetation indices as a Tool for Mapping Sugarcane Management Zones. Precis. Agric. 2023, 240, 213–234. [Google Scholar] [CrossRef]
- Flores, M.; Paschoalete, W.; Baio, F.; Campos, C.; Pantaleão, A.; Teodoro, L.; da Silva Júnior, C.; Teodoro, P. Relationship between vegetation indices and agronomic performance of maize varieties under different nitrogen rates. Biosci. J. 2020, 36, 1638–1644. [Google Scholar] [CrossRef]
- Maresma, A.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J. Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard uav service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Determination of sufficiency values of canopy reflectance vegetation indices for maximum growth and yield of cucumber. Eur. J. Agron. 2017, 84, 1–15. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, A.; Zhang, H.; Zhu, Q.; Zhang, H.; Sun, W.; Niu, Y. Estimating Leaf Chlorophyll Content of Winter Wheat from UAV Multispectral Images Using Machine Learning Algorithms under Different Species, Growth Stages, and Nitrogen Stress Conditions. Agriculture 2024, 14, 1064. [Google Scholar] [CrossRef]
- Pengphorm, P.; Thongrom, S.; Daengngam, C.; Duangpan, S.; Hussain, T.; Boonrat, P. Optimal-Band Analysis for Chlorophyll Quantification in Rice Leaves Using a Custom Hyperspectral Imaging System. Plants 2024, 130, 259. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnson, C.T.; Sumner, M.E. Methods of Soil Analysis: Part 3-Chemical Methods, 2nd ed.; ASA and SSSA: Madison, WI, USA, 1996; Volume 9. [Google Scholar] [CrossRef]
- Varvel, G.E.; Schepers, J.S.; Francis, D.D. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci. Soc. Am. J. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Christensen, S. Non-destructive assessment of growth parameters in spring barley. Eur. J. Agron. 1992, 1, 187–193. [Google Scholar] [CrossRef]
- Ghorbani, A.; Mossivand, A.; Ouri, A. Utility of the Normalised Difference Vegetation Index (NDVI) for land/canopy cover mapping in Khalkhal County (Iran). Ann. Biol. Res. 2012, 3, 5494–5503. [Google Scholar]
- Dordas, C. Chlorophyll meter readings, N leaf concentration and their relationship with N use efficiency in oregano. J. Plant Nutr. 2016, 40, 391–403. [Google Scholar] [CrossRef]
- Wichtl, M. Die Pharmakognostichchemische Analys. Band 1971, 12, Frankfurt/M. [Google Scholar]
- Elhakeem, A.; Van der Werf, W.; Bastians, L. Radiation interception and radiation use efficiency in mixtures of winter cover crops. Field Crops Res. 2021, 264, 108034. [Google Scholar] [CrossRef]
- Howell, T.A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 2001, 930, 281–289. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedure for Agricultural Research, 2nd ed.; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics, A Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Mahboob, W.; Yang, G.; Irfan, M. Crop nitrogen (N) utilization mechanism and strategies to improve N use efficiency. Acta Physiol. Plant 2023, 45, 52. [Google Scholar] [CrossRef]
- Wogiatzi-Kamwoukou, Ε.; Gougoulias, Ν.; Papadouli, Ζ.; Theodosiou, B.; Giannoulis, K. The Effect of N-Fertilization on Rosmarinus Officinalis L. (An Upright Variety) Yield in Central Greece. J. Food Sci. Technol. 2017, 7, 141–146. [Google Scholar] [CrossRef]
- Xu, G.; Takahashi, H. Improving nitrogen use efficiency: From cells to plant systems. J. Exp. Bot. 2020, 71, 4359–4364. [Google Scholar] [CrossRef]
- Hashimoto, N.; Saito, Y.; Yamamoto, S.; Ishibashi, T.; Ito, R.; Maki, M.; Homma, K. Relationship between Leaf Area Index and Yield Components in Farmers’ Paddy Fields. AgriEngineering 2023, 5, 1754–1765. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Uenk, D.; Veroude, H.; van de Waart, M. Relationships between ground cover, intercepted solar radiation, leaf area index and infrared reflectance of potato crops. Potato Res. 1991, 34, 113–121. [Google Scholar] [CrossRef]
- Skudra, I.; Ruza, A. Effect of Nitrogen and Sulphur Fertilization on Chlorophyll Content in Winter Wheat. Rural. Sustain. Res. 2017, 37, 29–37. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Horie, T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Sci. 1989, 29, 90–98. [Google Scholar] [CrossRef]
- Muchow, R.C.; Sinclair, T.R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci. 1994, 34, 721–727. [Google Scholar] [CrossRef]
- Prost, L.; Jeuffroy, M.-H. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agron. Sustain. Dev. 2007, 27, 321–330. [Google Scholar] [CrossRef]
- Debaeke, P.; Rouet, P.; Justes, E. Relationship between the normalized SPAD index and the nitrogen nutrition index: Application to durum wheat. J. Plant Nutr. 2006, 29, 75–92. [Google Scholar] [CrossRef]
- Delfine, S.; Loreto, F.; Pinelli, P.; Tognetti, R.; Alvino, A. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric. Ecosyst. Environ. 2005, 106, 243–252. [Google Scholar] [CrossRef]
- Baranauskiene, R.; Venskutonis, P.R.; Viskelis, P.; Dambrauskiene, E. Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). J. Agric. Food Chem. 2023, 17, 7751–7758. [Google Scholar] [CrossRef] [PubMed]
- Giannoulis, K.D.; Skoufogianni, E.; Bartzialis, D.; Solomou, A.D.; Danalatos, N.G. Growth and productivity of Salvia officinalis L. under Mediterranean climatic conditions depends on biofertilizer, nitrogen fertilization, and sowing density. Ind. Crops Prod. 2021, 160, 113136. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Kanwoukou, C.; Gougoulias, N.; Wogiatzi, E. Irrigation and nitrogen application affect Greek oregano (O. vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind. Crops Prod. 2020, 150, 112392. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef]
- Abbas, W.A.; Tawfeeiq, A.M. Effect of different levels of pruning and nitrogen fertilizer on vegetative traits and chemical content of Rosmarinus officinalis L. Tikrit J. Agric. Sci. 2023, 23, 32–40. [Google Scholar] [CrossRef]
- Nasim, W.; Ahmad, A.; Amin, A.; Tariq, M.; Awais, M.; Saqib, M.; Jabran, K.; Shah, G.M.; Sultana, S.R.; Hammad, H.M.; et al. Radiation efficiency and nitrogen fertilizer impacts on sunflower crop in contrasting environments of Punjab, Pakistan. Environ. Sci. Pollut. Res. Int. 2018, 25, 1822–1836. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, Y.; Yang, D.; Xiao, S.; Sun, Y.; Huang, J.; Peng, S.; Wang, F. Biomass, Radiation Use Efficiency, and Nitrogen Utilization of Ratoon Rice Respond to Nitrogen Management in Central China. Front. Plant Sci. 2022, 13, 889542. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.P.; Rodrigues, M.L.; Ricardo, C.P.; Osório, M.L. How Plants Cope with Water Stress in the Field: Photosynthesis and Growth. Ann. Bot. 2002, 103, 907–916. [Google Scholar] [CrossRef]
- Kumari, P.; Singh, R.P.; Kumar, S. Water Use Efficiency: A Key Factor for Sustainable Agriculture Under Climate Change Scenarios. Agric. Water Manag. 2020, 228, 105926. [Google Scholar]
- Haq, E.U.; Hassan, F.U.; Zhou, F.; Gong, X.; Manaf, A.; Shabbir, G.; Karim, M.F.; King, P.J.H.; Adil, M.F.; Shamsi, I.H. Nitrogen Fertilization Improves the Agro-Morphological and Yield Attributes of Sinapis alba L. Agronomy 2023, 13, 1621. [Google Scholar] [CrossRef]
- Khan, M.A.; Bukhari, N.A.; Ali Shah, S.Z. Essential Oils: A Review on Their Extraction Methods and Applications in Food Preservation. J. Food Sci. 2018, 83, 1435–1445. [Google Scholar]
- Monteith, J.L. Climate and the Efficiency of Crop Production in Britain. Phil. Trans. R. Soc. Lond. B 1977, 281, 277–294. [Google Scholar]
Year | N Treatments | Before Bloom | Full Bloom |
---|---|---|---|
2022 | 0 N | 92.08 ± 6.33 a † | 94.75 ± 3.15 a |
50 N | 106.69 ± 8.30 b | 108.67 ± 9.01 b | |
100 N | 114.46 ± 5.88 b | 137.92 ± 6.83 c | |
150 N | 127.73 ± 9.22 b | 147.25 ± 7.60 c | |
2023 | 0 N | 108.13 ± 1.25 a | 122.00 ± 0.33 a |
50 N | 124.27 ± 5.23 b | 134.75 ± 0.85 b | |
100 N | 125.81 ± 1.58 b | 135.42 ± 0.25 b | |
150 N | 124.29 ± 2.43 b | 136.58 ± 1.16 b |
Leaf Area Index (LAI) | |||
---|---|---|---|
Year | N Treatments | Before Bloom | Full Bloom |
2022 | 0 N | 1.32 ± 0.07 a † | 1.69 ± 0.11 a |
50 N | 1.92 ± 0.12 b | 2.06 ± 0.17 b | |
100 N | 2.21 ± 0.28 b | 2.62 ± 0.11 b | |
150 N | 2.04 ± 0.07 b | 2.82 ± 0.15 b | |
2023 | 0 N | 2.44 ± 0.013 a | 3.23 ± 0.12 a |
50 N | 2.92 ± 0.16 b | 3.92 ± 0.10 b | |
100 N | 2.87 ± 0.02 b | 4.75 ± 0.22 c | |
150 N | 3.19 ± 0.09 b | 4.66 ± 0.27 c |
Chlorophyll Content Meter Readings (CMRs) | Relative Chlorophyll Meter Readings (RCMRs) | ||||
---|---|---|---|---|---|
Year | N Treatments | Before Bloom | Full Bloom | Before Bloom | Full Bloom |
2022 | 0 N | 33.50 ± 1.10 a † | 33.78 ± 1.85 a | 0.87 ± 0.01 a | 0.82 ± 0.01 a |
50 N | 38.18 ± 1.02 b | 38.76 ± 0.71 b | 0.99 ± 0.02 b | 0.95 ± 0.02 b | |
100 N | 38.18 ± 0.77 b | 41.95 ± 0.98 b | 0.99 ± 0.03 b | 1.02 ± 0.03 b | |
150 N | 36.44 ± 0.44 b | 40.20 ± 0.79 b | 1.00 ± 0.02 b | 1.00 ± 0.02 b | |
2023 | 0 N | 36.65 ± 1.11 a | 40.51 ± 0.79 a | 0.69 ± 0.02 a | 0.79 ± 0.03 a |
50 N | 45.18 ± 1.04 b | 48.10 ± 0.72 b | 0.84 ± 0.03 b | 0.93 ± 0.02 b | |
100 N | 46.70 ± 0.79 b | 52.13 ± 1.17 b | 0.87 ± 0.02 b | 1.01 ± 0.03 b | |
150 N | 53.48 ± 1.30 c | 51.55 ± 0.25 b | 1.00 ± 0.01 b | 1.00 ± 0.02 b |
Photosynthetic Efficiency | |||
---|---|---|---|
Year | N Treatments | Before Bloom | Full Bloom |
2022 | 0 N | 0.596 ± 0.016 a † | 0.615 ± 0.010 a |
50 N | 0.678 ± 0.015 b | 0.665 ± 0.014 b | |
100 N | 0.681 ± 0.009 b | 0.649 ± 0.013 b | |
150 N | 0.718 ± 0.010 b | 0.662 ± 0.014 b | |
2023 | 0 N | 0.600 ± 0.004 a | 0.568 ± 0.041 a |
50 N | 0.667 ± 0.004 b | 0.680 ± 0.004 b | |
100 N | 0.718 ± 0.011 b | 0.678 ± 0.006 b | |
150 N | 0.709 ± 0.013 b | 0.686 ± 0.008 b |
Year | N Treatments | Assimilation Rate (A) (μmol m−2 s−1) | Transpiration Rate (E) (mmol m−2 s−1) | Stomatal Conductance (gs) (mol m−2 s−1) | Instantaneous Water Use Efficiency (A/E) (μmol mmol−1) |
---|---|---|---|---|---|
2022 | 0 N | 2.46 ± 0.13 a † | 0.63 ± 0.036 a | 0.06 ± 0.003 a | 4.09 ± 0.21 a |
50 N | 3.57 ± 0.23 b | 0.70 ± 0.034 ab | 0.18 ± 0.009 b | 5.13 ± 0.32 b | |
100 N | 4.40 ± 0.18 b | 0.86 ± 0.035 b | 0.13 ± 0.004 b | 5.14 ±0.28 b | |
150 N | 4.50 ± 0.07 b | 0.90 ± 0.044 b | 0.11 ± 0.002 b | 5.00 ± 0.33 b | |
2023 | 0 N | 2.68 ± 0.41 a | 0.62 ± 0.026 a | 0.13 ± 0.024 a | 4.26 ± 0.58 a |
50 N | 5.78 ± 0.36 b | 0.84 ± 0.062 b | 0.28 ± 0.016 b | 6.93 ± 0.64 b | |
100 N | 6.41 ± 0.11 b | 0.98 0.068 b | 0.34 ± 0.02 b | 6.63 ± 0.48 b | |
150 N | 6.32 ± 0.46 b | 1.07 0.078 b | 0.31 ± 0.016 b | 6.01 ± 0.49 b |
Year | N Treatments | Dry Matter Yield (g m−2) | Relative Dry Matter Yield | Essential Oil (%) | Essential Oil Yield (mL m−2) |
---|---|---|---|---|---|
2022 | 0 N | 95.75 ± 2.93 a † | 0.74 ± 0.021 a | 1.53 ± 0.09 a | 1.62 ± 0.19 a |
50 N | 117.25 ± 7.90 b | 0.91 ± 0.023 b | 2.02 ± 0.12 b | 2.38 ± 0.20 b | |
100 N | 129.25 ± 7.50 c | 1.00 ± 0.019 b | 1.91 ± 0.03 b | 2.47 ± 0.19 b | |
150 N | 132.25 ± 5.01 c | 1.02 ± 0.021 b | 1.98 ± 0.13 b | 2.59 ± 0.21 b | |
2023 | 0 N | 94.50 ± 6.67 a | 0.66 ± 0.023 a | 2.06 ± 0.13 a | 1.89 ± 0.18 a |
50 N | 143.50 ± 5.24 b | 1.00 ± 0.027 b | 2.78 ± 0.17 b | 4.01 ± 0.28 b | |
100 N | 143.50 ± 2.53 b | 1.00 ± 0.017 b | 2.44 ± 0.15 b | 3.55 ± 0.21 b | |
150 N | 157.25 ± 6.28 b | 1.10 ± 0.024 b | 2.44 ± 0.14 b | 3.83 ± 0.24 b |
Year | N Treatments | Radiation Use Efficiency (RUE; g MJ−1) | Water Use Efficiency (WUE) (kg/ha/mm) | Agronomic Efficiency (AE) (kg/kg) | Partial Factor Productivity (PFP) (kg/kg) |
---|---|---|---|---|---|
2022 | 0 N | 5.24 ± 0.37 a † | 4.40 ± 0.23 a | - | - |
50 N | 6.41 ± 0.41 b | 5.39 ± 0.28 b | 4.30 ± 0.16 a | 23.45 ± 1.21 a | |
100 N | 7.07 ± 0.67 b | 5.95 ± 0.24 b | 3.35 ± 0.14 b | 12.93 ± 1.18 b | |
150 N | 7.23 ± 0.52 b | 6.08 ± 0.31 b | 2.43 ± 0.12 c | 8.82 ± 0.87 c | |
2023 | 0 N | 5.19 ± 0.41 a | 2.75 ± 0.14 a | - | - |
50 N | 7.88 ± 0.46 b | 4.18 ± 0.21 b | 9.80 ± 0.54 a | 28.70 ± 2.41 a | |
100 N | 7.88 ± 0.53 b | 4.18 ± 0.23 b | 4.90 ± 0.28 b | 14.35 ± 2.14 b | |
150 N | 8.64 ± 0.74 b | 4.58 ± 0.21 b | 4.18 ± 0.26 b | 10.48 ± 1.87 b |
NDVI | EVI2 | MSAVI2 | fPAR | RVI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Year | Treatment | Before Bloom | Full Bloom | Before Bloom | Full Bloom | Before Bloom | Full Bloom | Before Bloom | Full Bloom | Before Bloom | Full Bloom |
2022 | 0 N | 0.54 ± 0.018 a † | 0.69 ± 0.009 a | 0.15 ± 0.013 a | 0.17 ± 0.019 a | 0.12 ± 0.006 a | 0.15 ± 0.018 a | 0.50 ± 0.022 a | 0.64 ± 0.019 a | 3.39 ± 0.161 a | 5.47 ± 0.214 a |
50 N | 0.64 ± 0.022 ab | 0.78 ± 0.018 b | 0.21 ± 0.010 b | 0.27 ± 0.012 b | 0.17 ± 0.011 a | 0.24 ± 0.011 b | 0.62 ± 0.027 b | 0.77 ± 0.044 b | 4.62 ± 0.306 b | 7.58 ± 0.304 b | |
100 N | 0.67 ± 0.014 b | 0.78 ± 0.012 b | 0.21 ± 0.004 b | 0.24 ± 0.010 b | 0.18 ± 0.020 ab | 0.24 ± 0.016 b | 0.66 ± 0.017 b | 0.76 ± 0.021 b | 5.11 ± 0.264 b | 7.56 ± 0.395 b | |
150 N | 0.62 ± 0.018 ab | 0.80 ± 0.027 b | 0.24 ± 0.012 b | 0.25 ± 0.016 b | 0.23 ± 0.007 b | 0.24 ± 0.017 b | 0.60 ± 0.022 ab | 0.77 ± 0.002 b | 4.42 ± 0.268 b | 7.61 ± 0.316 b | |
2023 | 0 N | 0.77 ± 0.007 a | 0.76 ± 0.004 a | 0.18 ± 0.019 a | 0.15 ± 0.010 a | 0.16 ± 0.018 a | 0.13 ± 0.009 a | 0.78 ± 0.011 a | 0.77 ± 0.010 a | 7.58 ± 0.332 a | 7.32 ± 0.281 a |
50 N | 0.79 ± 0.008 a | 0.77 ± 0.003 a | 0.21 ± 0.027 ab | 0.23 ± 0.058 b | 0.18 ± 0.025 a | 0.21 ± 0.055 b | 0.81 ± 0.023 a | 0.78 ± 0.005 a | 8.66 ± 0.962 b | 7.63 ± 0.148 a | |
100 N | 0.79 ± 0.006 a | 0.80 ± 0.009 a | 0.24 ± 0.022 b | 0.19 ± 0.037 a | 0.22 ± 0.021 b | 0.17 ± 0.035 b | 0.82 ± 0.013 a | 0.83 ± 0.011 b | 8.79 ± 0.542 b | 9.24 ± 0.469 b | |
150 N | 0.75 ± 0.014 a | 0.80 ± 0.007a | 0.22 ± 0.057 b | 0.21 ± 0.027 b | 0.20 ± 0.057 ab | 0.19 ± 0.027 b | 0.77 ± 0.039 a | 0.83 ± 0.008 b | 7.64 ± 0.874 a | 9.16 ± 0.351 b |
LAI | CMRs | PE | E | gs | A | A/E | DMY | EOC | EOY | NDVI | EVI2 | MSAVI2 | PAR | RVI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | 0.596 ** | 0.572 ** | 0.408 ** | 0.511 ** | 0.099 | 0.464 ** | 0.115 | 0.519 ** | 0.292 | 0.481 ** | 0.518 ** | 0.243 | 0.298 * | 0.559 ** | 0.453 ** |
LAI | 0.781 ** | 0.263 * | 0.694 ** | 0.274 | 0.731 ** | −0.379 ** | 0.550 ** | 0.621 ** | 0.709 ** | 0.608 ** | 0.007 | 0.029 | 0.667 ** | 0.621 ** | |
CMR | 0.470 ** | 0.648 ** | 0.134 | 0.733 ** | −0.328 * | 0.633 ** | 0.572 ** | 0.710 ** | 0.658 ** | 0.189 | 0.196 | 0.629 ** | 0.615 ** | ||
PE | 0.336 * | 0.149 | 0.623 ** | 0.147 | 0.731 ** | 0.158 | 0.498 ** | 0.294 * | 0.430 ** | 0.411 ** | 0.261 * | 0.201 | |||
E | 0.348 * | 0.746 ** | −0.406 ** | 0.542 ** | 0.546 ** | 0.666 ** | 0.778 ** | 0.320 * | 0.365 * | 0.654 ** | 0.639 ** | ||||
gs | 0.310 * | −0.310 * | 0.160 | 0.449 ** | 0.400 * | 0.228 | −0.033 | −0.034 | 0.197 | 0.145 | |||||
A | −0.307 * | 0.697 ** | 0.572 ** | 0.771 ** | 0.634 ** | 0.384 ** | 0.382 ** | 0.553 ** | 0.528 ** | ||||||
A/E | −0.135 | −0.527 ** | −0.438 * | −0.440 ** | 0.140 | 0.112 | −0.418 ** | −0.380 ** | |||||||
DMY | 0.366 * | 0.790 ** | 0.570 ** | 0.311 | 0.341 | 0.411 * | 0.360 * | ||||||||
EOC | 0.844 ** | 0.691 ** | 0.091 | 0.140 | 0.630 ** | 0.605 ** | |||||||||
EOY | 0.771 ** | 0.201 | 0.244 | 0.628 ** | 0.582 ** | ||||||||||
NDVI | 0.250 * | 0.245 | 0.875 ** | 0.843 ** | |||||||||||
EVI2 | 0.948 ** | 0.339 ** | 0.377 ** | ||||||||||||
MSAVI2 | 0.336 ** | 0.372 ** | |||||||||||||
fPAR | 0.934 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dordas, C.A. Impact of Nitrogen Fertilization on Rosemary: Assessment of Physiological Traits, Vegetation Indices, and Environmental Resource Use Efficiency. Nitrogen 2025, 6, 33. https://doi.org/10.3390/nitrogen6020033
Dordas CA. Impact of Nitrogen Fertilization on Rosemary: Assessment of Physiological Traits, Vegetation Indices, and Environmental Resource Use Efficiency. Nitrogen. 2025; 6(2):33. https://doi.org/10.3390/nitrogen6020033
Chicago/Turabian StyleDordas, Christos A. 2025. "Impact of Nitrogen Fertilization on Rosemary: Assessment of Physiological Traits, Vegetation Indices, and Environmental Resource Use Efficiency" Nitrogen 6, no. 2: 33. https://doi.org/10.3390/nitrogen6020033
APA StyleDordas, C. A. (2025). Impact of Nitrogen Fertilization on Rosemary: Assessment of Physiological Traits, Vegetation Indices, and Environmental Resource Use Efficiency. Nitrogen, 6(2), 33. https://doi.org/10.3390/nitrogen6020033