Linking Satellite and Ground Observations of NO2 in Spanish Cities: Influence of Meteorology and O3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regions of Interest and Study Period
2.2. In Situ Data
2.3. Satellite NO2 Data
2.4. Data Processing
3. Results
3.1. Data Overview
3.2. Temporal Evolution of Study Variables
3.3. Correlation Between NO2 and Meteorological Variables
3.4. Study Variables Under Extreme NO2 Conditions
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, R.V.; Jacob, D.J.; Chance, K.; Kurosu, T.P.; Palmer, P.I.; Evans, M.J. Global Inventory of Nitrogen Oxide Emissions Constrained by Space-Based Observations of NO2 Columns. J. Geophys. Res. Atmos. 2003, 108, 4537. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Kyle, P.R.; Tsanev, V.I.; McGonigle, A.J.S.; Mather, T.A.; Sweeney, D. Mt. Erebus, the Largest Point Source of NO2 in Antarctica. Atmos. Environ. 2005, 39, 6000–6006. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Smith, S.J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E.A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R.V. A Global Anthropogenic Emission Inventory of Atmospheric Pollutants from Sector- And Fuel-Specific Sources (1970–2017): An Application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413–3442. [Google Scholar] [CrossRef]
- Shaw, S.; Van Heyst, B. An Evaluation of Risk Ratios on Physical and Mental Health Correlations Due to Increases in Ambient Nitrogen Oxide (NOx) Concentrations. Atmosphere 2022, 13, 967. [Google Scholar] [CrossRef]
- Jonson, J.E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C. Impact of Excess NOx Emissions from Diesel Cars on Air Quality, Public Health and Eutrophication in Europe. Environ. Res. Lett. 2017, 12, 094017. [Google Scholar] [CrossRef]
- Kwon, H.; Cho, N. Corrosion Behaviors of Outdoor Bronze Sculptures in an Urban–Industrial Environment: Corrosion Experiment on Artificial Sulfide Patina. Metals 2023, 13, 1101. [Google Scholar] [CrossRef]
- United Nations (UN). World Urbanization Prospects 2018. Available online: https://population.un.org/wup/assets/WUP2018-Highlights.pdf (accessed on 12 February 2024).
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 12 February 2024).
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature Mortality Due to Air Pollution in European Cities: A Health Impact Assessment. Lancet Planet. Heal. 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Anenberg, S.C.; Kerr, G.H.; Mohegh, A.; Lu, Z.; Streets, D.G. TROPOMI NO2 in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO2 Concentrations. Earth’s Futur. 2021, 9, e2020EF001665. [Google Scholar] [CrossRef] [PubMed]
- Morillas, C.; Alvarez, S.; Pires, J.C.M.; Garcia, A.J.; Martinez, S. Impact of the Implementation of Madrid’s Low Emission Zone on NO2 Concentration Using Sentinel-5P/TROPOMI Data. Atmos. Environ. 2024, 320, 120326. [Google Scholar] [CrossRef]
- Petetin, H.; Guevara, M.; Compernolle, S.; Bowdalo, D.; Bretonnière, P.A.; Enciso, S.; Jorba, O.; Lopez, F.; Soret, A.; García-Pando, C.P. Potential of TROPOMI for Understanding Spatio-Temporal Variations in Surface NO2 and Their Dependencies upon Land Use over the Iberian Peninsula. Atmos. Chem. Phys. 2023, 23, 3905–3935. [Google Scholar] [CrossRef]
- Rudke, A.P.; Martins, J.A.; Hallak, R.; Martins, L.D.; de Almeida, D.S.; Beal, A.; Freitas, E.D.; Andrade, M.F.; Koutrakis, P.; Albuquerque, T.T.A. Evaluating TROPOMI and MODIS Performance to Capture the Dynamic of Air Pollution in São Paulo State: A Case Study during the COVID-19 Outbreak. Remote Sens. Environ. 2023, 289, 113514. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Eskes, H.; Van Geffen, J.; Boersma, F.; Eichmann, K.-U.; Apituley, A.; Pedergnana, M.; Sneep, M.; Veefkind, J.P.; Loyola, D. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide Document Number: S5P-KNMI-L2-0021-MA. 2022. Available online: https://sentiwiki.copernicus.eu/__attachments/1673595/S5P-KNMI-L2-0021-MA%20-%20Sentinel-5P%20Level%202%20Product%20User%20Manual%20Nitrogendioxide%202024%20-%204.4.0.pdf?inst-v=4318c067-be91-4544-be2e-16af66246c9f (accessed on 12 February 2024).
- Eskes, H.J.; Eichmann, K.-U. S5P Mission Performance Centre Nitrogen Dioxide Readme L2; Royal Netherlands Meteorological Institute: De Bilt, The Netherlands, 2018; Available online: https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File.pdf (accessed on 12 February 2024).
- Griffin, D.; Zhao, X.; McLinden, C.A.; Boersma, F.; Bourassa, A.; Dammers, E.; Degenstein, D.; Eskes, H.; Fehr, L.; Fioletov, V.; et al. High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands. Geophys. Res. Lett. 2019, 46, 1049–1060. [Google Scholar] [CrossRef]
- Lange, K.; Richter, A.; Burrows, J.P. Variability of Nitrogen Oxide Emission Fluxes and Lifetimes Estimated from Sentinel-5P TROPOMI Observations. Atmos. Chem. Phys. 2022, 22, 2745–2767. [Google Scholar] [CrossRef]
- Cersosimo, A.; Serio, C.; Masiello, G. TROPOMI NO2 Tropospheric Column Data: Regridding to 1 Km Grid-Resolution and Assessment of Their Consistency with In Situ Surface Observations. Remote Sens. 2020, 12, 2212. [Google Scholar] [CrossRef]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 Observations with Ground-Based Measurements in Helsinki. Atmos. Meas. Tech. 2020, 13, 205–218. [Google Scholar] [CrossRef]
- Jeong, U.; Hong, H. Assessment of Tropospheric Concentrations of NO2 from the TROPOMI/Sentinel-5 Precursor for the Estimation of Long-Term Exposure to Surface NO2 over South Korea. Remote Sens. 2021, 13, 1877. [Google Scholar] [CrossRef]
- Morillas, C.; Alvarez, S.; Serio, C.; Masiello, G.; Martinez, S. TROPOMI NO2 Sentinel-5P Data in the Community of Madrid: A Detailed Consistency Analysis with in Situ Surface Observations. Remote Sens. Appl. Soc. Environ. 2024, 33, 101083. [Google Scholar] [CrossRef]
- Giosanu, D.; Marian, M.C.; Zaharia, A. THE INFLUENCE OF METEOROLOGICAL AND TOPOGRAPHICAL PARAMETERS ON THE DISPERSION OF PM10 AND CO POLLUTANTS. Curr. Trends Nat. Sci. 2021, 10, 92–98. [Google Scholar] [CrossRef]
- Giovannini, L.; Ferrero, E.; Karl, T.; Rotach, M.W.; Staquet, C.; Castelli, S.T.; Zardi, D. Atmospheric Pollutant Dispersion over Complex Terrain: Challenges and Needs for Improving Air Quality Measurements and Modeling. Atmosphere 2020, 11, 646. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, S.; Xu, J.; Cui, H.; Ma, R.; Gao, F. Relationship between Meteorological Factors and Diffusion of Atmospheric Pollutants. Chem. Eng. Trans. 2018, 71, 1417–1422. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Hu, J.; Ying, Q.; Hu, X.M. Relationships between Meteorological Parameters and Criteria Air Pollutants in Three Megacities in China. Environ. Res. 2015, 140, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Shuo, W.; Zhao, W.; Xu, X.; Zhang, W.; Arshad, A. Investigating the Relationship between Air Pollutants and Meteorological Parameters Using Satellite Data over Bangladesh. Remote Sens. 2022, 14, 2757. [Google Scholar] [CrossRef]
- Adams, T.J.; Geddes, J.A.; Lind, E.S. New Insights Into the Role of Atmospheric Transport and Mixing on Column and Surface Concentrations of NO2 at a Coastal Urban Site. J. Geophys. Res. Atmos. 2023, 128, e2022JD038237. [Google Scholar] [CrossRef]
- Singh, A. Role of Atmospheric Boundary Layer (ABL) Height and Ventilation Coefficient on Urban Air Quality- A Study Based on Observations and NWP Model. J. Atmos. Sci. Res. 2019, 2, 11–16. [Google Scholar] [CrossRef]
- Su, T.; Li, Z.; Kahn, R. Relationships between the Planetary Boundary Layer Height and Surface Pollutants Derived from Lidar Observations over China: Regional Pattern and Influencing Factors. Atmos. Chem. Phys. 2018, 18, 15921–15935. [Google Scholar] [CrossRef]
- Karami, S.; Ghassabi, Z.; Khoddam, N.; Habibi, M. Investigating Meteorological Factors Influencing Pollutant Concentrations and Copernicus Atmosphere Monitoring Service (CAMS) Model Forecasts in the Tehran Metropolis. Atmosphere 2025, 16, 264. [Google Scholar] [CrossRef]
- Danek, T.; Weglinska, E.; Zareba, M. The Influence of Meteorological Factors and Terrain on Air Pollution Concentration and Migration: A Geostatistical Case Study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef]
- Ahmad, N.; Lin, C.; Lau, A.K.H.; Kim, J.; Li, C.; Qin, K.; Zhao, C.; Lin, J.; Fung, J.C.H.; Li, Y. Effects of Meteorological Conditions on the Mixing Height of Nitrogen Dioxide in China Using New-Generation Geostationary Satellite Measurements and Machine Learning. Chemosphere 2024, 346, 140615. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística (INE). Cifras Oficiales de Población de Los Municipios Españoles En Aplicación de La Ley de Bases Del Régimen Local (Art. 17). Available online: https://www.ine.es/dynt3/inebase/index.htm?padre=525 (accessed on 13 March 2024).
- Ku, C.A.; Tsai, H.K. Evaluating the Influence of Urban Morphology on Urban Wind Environment Based on Computational Fluid Dynamics Simulation. ISPRS Int. J. Geo-Inf. 2020, 9, 399. [Google Scholar] [CrossRef]
- Melo, A.L.V.; Santos, J.M.; Reis, N.C.; Castro, I.P.; Goulart, E.V.; Xie, Z.T. Influence of Wind Direction and Source Location on Peak-to-Mean Concentration Ratios in Urban Environments. J. Wind Eng. Ind. Aerodyn. 2023, 232, 105264. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1950 to Present. 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=download (accessed on 12 February 2024).
- Cedeno Jimenez, J.R.; Brovelli, M.A. NO2 Concentration Estimation at Urban Ground Level by Integrating Sentinel 5P Data and ERA5 Using Machine Learning: The Milan (Italy) Case Study. Remote Sens. 2023, 15, 5400. [Google Scholar] [CrossRef]
- Government of Valencia Air Quality and Meteorological Data. Available online: https://mediambient.gva.es/es/web/calidad-ambiental/datos-on-line (accessed on 12 February 2024).
- Government of Catalonia List of Meteorological Stations of Catalonia. Available online: https://www.meteo.cat/observacions/llistat-xema (accessed on 12 February 2024).
- Government of Catalunya Air Quality Data. Available online: https://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/descarrega-de-dades/descarrega-dades-automatiques/ (accessed on 12 February 2024).
- City of Madrid Meteorological Data Since 2019. Available online: https://datos.madrid.es/sites/v/index.jsp?vgnextoid=fa8357cec5efa610VgnVCM1000001d4a900aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD (accessed on 12 February 2024).
- Ayuntamiento de Madrid Datos de Calidad Del Aire Desde 2001. Available online: https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=aecb88a7e2b73410VgnVCM2000000c205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD (accessed on 17 April 2023).
- Caleta, L.; Gulde, S.T.; Kolm, M.G.; Smith, D.J.; Maurer, R.; Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bagnasco, G. Sentinel 4: A Geostationary Imaging UVN Spectrometer for Air Quality Monitoring: Status of Design, Performance and Development. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Canary Islands, Spain, 7–10 October 2014; Volume 10563, pp. 1158–1166. [Google Scholar] [CrossRef]
- Irizar, J.; Melf, M.; Bartsch, P.; Koehler, J.; Weiss, S.; Greinacher, R.; Erdmann, M.; Kirschner, V.; Perez Albinana, A.; Martin, D. Sentinel-5/UVNS. In Proceedings of the International Conference on Space Optics-ICSO 2018, Chania, Greece, 9–12 October 2018; Volume 11180, pp. 41–58. [Google Scholar] [CrossRef]
- Van Geffen, J.H.G.M.; Eskes, H.J.; Boersma, K.F.; Maasakkers, J.D.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products. 2019. Available online: https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products.pdf (accessed on 12 February 2024).
- European Space Agency Data Products-Sentinel-5P Mission. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/data-products (accessed on 12 February 2024).
- Williams, J.E.; Folkert Boersma, K.; Le Sager, P.; Verstraeten, W.W. The High-Resolution Version of TM5-MP for Optimized Satellite Retrievals: Description and Validation. Geosci. Model Dev. 2017, 10, 721–750. [Google Scholar] [CrossRef]
- Earth Engine Data Catalog Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2#description (accessed on 17 April 2023).
- Pires, J.C.M.; Sousa, S.I.V.; Pereira, M.C.; Alvim-Ferraz, M.C.M.; Martins, F.G. Management of Air Quality Monitoring Using Principal Component and Cluster Analysis—Part II: CO, NO2 and O3. Atmos. Environ. 2008, 42, 1261–1274. [Google Scholar] [CrossRef]
- Infostat-Software Estadístico. Available online: https://www.infostat.com.ar/ (accessed on 25 April 2025).
- Cedeno Jimenez, J.R.; Pugliese Viloria, A.D.J.; Brovelli, M.A. Estimating Daily NO2 Ground Level Concentrations Using Sentinel-5P and Ground Sensor Meteorological Measurements. ISPRS Int. J. Geo-Inf. 2023, 12, 107. [Google Scholar] [CrossRef]
- Shah, V.J.; Jacob, D.; Li, K.; Silvern, R.; Zhai, S.; Liu, M.; Lin, J.; Zhang, Q. Effect of Changing NOx Lifetime on the Seasonality and Long-Term Trends of Satellite-Observed Tropospheric NO2 Columns over China. Atmos. Chem. Phys. 2020, 20, 1483–1495. [Google Scholar] [CrossRef]
- Laughner, J.L.; Cohen, R.C. Direct Observation of Changing NOx Lifetime in North American Cities. Science 2019, 366, 723–727. [Google Scholar] [CrossRef]
- Su, J.G.; Brauer, M.; Ainslie, B.; Steyn, D.; Larson, T.; Buzzelli, M. An Innovative Land Use Regression Model Incorporating Meteorology for Exposure Analysis. Sci. Total Environ. 2008, 390, 520–529. [Google Scholar] [CrossRef]
- Gorai, A.K.; Tuluri, F.; Tchounwou, P.B.; Ambinakudige, S. Influence of Local Meteorology and NO2 Conditions on Ground-Level Ozone Concentrations in the Eastern Part of Texas, USA. Air Qual. Atmos. Heal. 2015, 8, 81–96. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Kim, J.; Beyersdorf, A.J.; Choi, M.; Lee, S.; Koo, J.H.; Giles, D.M.; Schafer, J.S.; Sinyuk, A.; et al. Influence of Cloud, Fog, and High Relative Humidity during Pollution Transport Events in South Korea: Aerosol Properties and PM2.5 Variability. Atmos. Environ. 2020, 232, 117530. [Google Scholar] [CrossRef]
- Jayamurugan, R.; Kumaravel, B.; Palanivelraja, S.; Chockalingam, M.P. Influence of Temperature, Relative Humidity and Seasonal Variability on Ambient Air Quality in a Coastal Urban Area. Int. J. Atmos. Sci. 2013, 1, 264046. [Google Scholar] [CrossRef]
- Granier, C.; Darras, S.; van Der Gon, H.D.; Doubalova, J.; Elguindi, N.; Galle, B.; Gauss, M.; Guevara, M.; Jalkanen, J.-P.; Kuenen, J.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions. Copernic. Atmos. Monit. Serv. 2019, 54. [Google Scholar] [CrossRef]
- Ravina, M.; Caramitti, G.; Panepinto, D.; Zanetti, M. Air Quality and Photochemical Reactions: Analysis of NOx and NO2 Concentrations in the Urban Area of Turin, Italy. Air Qual. Atmos. Heal. 2022, 15, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Di Bernardino, A.; Mevi, G.; Iannarelli, A.M.; Falasca, S.; Cede, A.; Tiefengraber, M.; Casadio, S. Temporal Variation of NO2 and O3 in Rome (Italy) from Pandora and In Situ Measurements. Atmosphere 2023, 14, 594. [Google Scholar] [CrossRef]
- Lorente, A.; Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; van Geffen, J.H.G.M.; de Zeeuw, M.B.; Denier van der Gon, H.A.C.; Beirle, S.; Krol, M.C. Quantification of Nitrogen Oxides Emissions from Build-up of Pollution over Paris with TROPOMI. Sci. Rep. 2019, 9, 20033. [Google Scholar] [CrossRef]
NO2 AQ [µg/m3] | NO2 TROPOMI [DU] | O3 AQ [µg/m3] | WS [m/s] | T [°C] | RH [%] | SR [W/m2] | ||
---|---|---|---|---|---|---|---|---|
Madrid | Average | 21.4 | 0.246 | 72.8 | 1.34 | 20.4 | 45.5 | 595 |
Min | 5.5 | 0.044 | 5.3 | 0.119 | 6.3 | 12.5 | 49.3 | |
Median | 17.7 | 0.18 | 72.3 | 1.21 | 19.6 | 41.3 | 604 | |
Max | 73.1 | 1.06 | 147 | 3.73 | 37.8 | 99 | 977 | |
Count | 365 | 289 | 365 | 365 | 365 | 365 | 365 | |
Barcelona | Average | 21.1 | 0.218 | 68 | 8.04 | 21 | 57.5 | 542 |
Min | 6 | 0.034 | 10.3 | 2.15 | 6.57 | 17 | 22.7 | |
Median | 19.3 | 0.178 | 68 | 7.16 | 21.2 | 56.8 | 497 | |
Max | 72.7 | 0.881 | 129 | 29.6 | 33.8 | 98.3 | 927 | |
Count | 365 | 286 | 365 | 365 | 365 | 365 | 365 | |
Valencia | Average | 17.5 | 0.152 | 72.2 | 2.97 | 22 | 52.2 | 522 |
Min | 2.38 | 0.026 | 8.63 | 0.424 | 10.1 | 19.8 | 16.2 | |
Median | 15.8 | 0.116 | 75.1 | 2.82 | 22.4 | 53.2 | 505 | |
Max | 51.5 | 0.493 | 113 | 10.1 | 36.1 | 81.1 | 900 | |
Count | 365 | 277 | 365 | 365 | 365 | 365 | 365 |
NO2 | O3 | WS | T | SR | RH | ||
---|---|---|---|---|---|---|---|
Madrid | AQ stations | 0.86 | −0.68 | −0.57 | −0.40 | −0.50 | 0.30 |
TROPOMI | −0.56 | −0.58 | −0.36 | −0.37 | 0.18 | ||
Barcelona | AQ stations | 0.65 | −0.43 | −0.38 | −0.10 * | −0.17 | 0.02 * |
TROPOMI | −0.57 | −0.33 | −0.46 | −0.41 | −0.01 * | ||
Valencia | AQ stations | 0.68 | −0.44 | −0.40 | −0.17 | −0.18 | 0.12 * |
TROPOMI | −0.50 | −0.45 | −0.48 | −0.40 | −0.06 * |
O3 AQ [µg/m3] | WS [m/s] | T [°C] | RH [%] | SR [W/m2] | ||
---|---|---|---|---|---|---|
Madrid | AQ stations | 31.5 (91.1) | 0.57 (1.95) | 14.3 (24.4) | 56.6 (34.7) | 356 (831) |
TROPOMI | 40.6 (78.4) | 0.6 (2.15) | 14.8 (21.9) | 46 (45.1) | 488 (663) | |
Barcelona | AQ stations | 46 (74.6) | 5.31 (11) | 18.7 (20.3) | 59.2 (56.8) | 411 (589) |
TROPOMI | 47.3 (80.2) | 6.05 (10.9) | 15.7 (23.8) | 55.6 (61) | 454 (657) | |
Valencia | AQ stations | 50.7 (79.8) | 1.7 (3.99) | 18.7 (22.8) | 51.8 (46.5) | 412 (576) |
TROPOMI | 54.1 (82.8) | 1.74 (3.23) | 17.2 (24.6) | 49.5 (52.8) | 440 (666) |
City | Parameter | AQ Stations | TROPOMI | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | ||||
Madrid | NO2 | −0.68 | −0.60 | −0.59 | −0.67 | ||
O3 | 0.94 | 0.03 | 0.93 | −0.02 | |||
Wind Speed | 0.29 | 0.88 | 0.32 | 0.84 | |||
Temperature | 0.85 | −0.29 | 0.86 | −0.25 | |||
Relative humidity | −0.84 | 0.35 | −0.81 | 0.37 | |||
Solar radiation | 0.92 | −0.16 | 0.91 | −0.15 | |||
Eigenvalue | 3.70 | 1.36 | 3.54 | 1.39 | |||
Variance (%) | 0.62 | 0.22 | 0.59 | 0.23 | |||
Cumulative variance (%) | 0.62 | 0.84 | 0.59 | 0.82 | |||
AQ Stations | TROPOMI | ||||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
Barcelona | NO2 | −0.35 | −0.76 | 0.08 | −0.69 | −0.51 | −0.14 |
O3 | 0.84 | 0.32 | 0.13 | 0.91 | 0.05 | −0.01 | |
Wind Speed | −0.09 | 0.85 | −0.17 | 0.09 | 0.90 | −0.30 | |
Temperature | 0.81 | −0.18 | 0.40 | 0.84 | −0.23 | 0.28 | |
Relative humidity | −0.53 | 0.30 | 0.78 | −0.26 | 0.27 | 0.91 | |
Solar radiation | 0.92 | −0.17 | −0.01 | 0.88 | −0.24 | −0.07 | |
Eigenvalue | 2.64 | 1.54 | 0.82 | 2.87 | 1.25 | 1.02 | |
Variance (%) | 0.44 | 0.26 | 0.14 | 0.48 | 0.21 | 0.17 | |
Cumulative variance (%) | 0.44 | 0.70 | 0.84 | 0.48 | 0.69 | 0.86 | |
AQ Stations | TROPOMI | ||||||
PC1 | PC2 | PC3 | PC1 | PC2 | |||
Valencia | NO2 | −0.59 | −0.53 | −0.03 | −0.74 | 0.05 | |
O3 | 0.83 | 0.08 | 0.26 | 0.81 | 0.11 | ||
Wind Speed | 0.46 | 0.71 | 0.02 | 0.64 | −0.46 | ||
Temperature | 0.68 | −0.5 | 0.19 | 0.74 | 0.23 | ||
Relative humidity | −0.23 | −0.05 | 0.97 | 0.11 | 0.92 | ||
Solar radiation | 0.81 | −0.42 | −0.10 | 0.84 | −0.02 | ||
Eigenvalue | 2.40 | 1.29 | 1.02 | 2.88 | 1.12 | ||
Variance (%) | 0.40 | 0.22 | 0.17 | 0.48 | 0.19 | ||
Cumulative variance (%) | 0.40 | 0.62 | 0.79 | 0.48 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morillas, C.; Álvarez, S.; Pires, J.C.M.; García, A.J.; Martínez, S. Linking Satellite and Ground Observations of NO2 in Spanish Cities: Influence of Meteorology and O3. Nitrogen 2025, 6, 32. https://doi.org/10.3390/nitrogen6020032
Morillas C, Álvarez S, Pires JCM, García AJ, Martínez S. Linking Satellite and Ground Observations of NO2 in Spanish Cities: Influence of Meteorology and O3. Nitrogen. 2025; 6(2):32. https://doi.org/10.3390/nitrogen6020032
Chicago/Turabian StyleMorillas, Carlos, Sergio Álvarez, José C. M. Pires, Adrián Jesús García, and Sara Martínez. 2025. "Linking Satellite and Ground Observations of NO2 in Spanish Cities: Influence of Meteorology and O3" Nitrogen 6, no. 2: 32. https://doi.org/10.3390/nitrogen6020032
APA StyleMorillas, C., Álvarez, S., Pires, J. C. M., García, A. J., & Martínez, S. (2025). Linking Satellite and Ground Observations of NO2 in Spanish Cities: Influence of Meteorology and O3. Nitrogen, 6(2), 32. https://doi.org/10.3390/nitrogen6020032