Data-Driven and Mechanistic Soil Modeling for Precision Fertilization Management in Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Properties
2.3. Yield, Crop Spectral Properties, and Farming Practices
2.4. The Soil Model
2.4.1. Phosphorus Correction Coefficient (PCC)
2.4.2. Cotton Phosphorus Need
2.4.3. Phosphorus Soil Availability
2.4.4. Nitrogen Soil Losses
2.4.5. Manganese Need
2.4.6. Copper Need
2.4.7. Potassium Need
2.4.8. Magnesium Correction Coefficient
2.4.9. Zn Correction Coefficient and Cotton Zn Need
2.4.10. Boron Correction Coefficient for Medium Soils (BCCM)
2.5. Machine Learning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
N | Nitrogen |
P | Phosphorus |
ML | Machine learning |
RF | Random Forest |
MAE | Mean Absolute Error |
Mn | Manganese |
Cu | Copper |
K | Potassium |
Mg | Magnesium |
Zn | Zinc |
B | Boron |
EC | Electrical conductivity |
OM | Organic matter |
References
- Karagiannis, G. The EU Cotton Policy Regime and the Implications of the Proposed Changes for Producer Welfare; FAO: Rome, Italy, 2004. [Google Scholar]
- Tsaliki, E.; Loison, R.; Kalivas, A.; Panoras, I.; Grigoriadis, I.; Traore, A.; Gourlot, J.-P. Cotton Cultivation in Greece under Sustainable Utilization of Inputs. Sustainability 2024, 16, 347. [Google Scholar] [CrossRef]
- Dai, J.; Dong, H. Intensive Cotton Farming Technologies in China: Achievements, Challenges and Countermeasures. Field Crops Res. 2014, 155, 99–110. [Google Scholar] [CrossRef]
- Chen, P.; Dai, J.; Zhang, G.; Hou, W.; Mu, Z.; Cao, Y. Diagnosis of Cotton Nitrogen Nutrient Levels Using Ensemble MobileNetV2FC, ResNet101FC, and DenseNet121FC. Agriculture 2024, 14, 525. [Google Scholar] [CrossRef]
- Fink, M.; Scharpf, H.C. Apparent Nitrogen Mineralization and Recovery of Nitrogen Supply in Field Trials with Vegetable Crops. J. Hortic. Sci. Biotechnol. 2000, 75, 723–726. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Cleaver, T.J.; Loquens, S.M.H.; Niendorf, K.B. Relationship between Plant Weight and Growing Period for Vegetable Crops in the United Kingdom. Ann. Bot. 1977, 41, 987–997. [Google Scholar] [CrossRef]
- Iatrou, M.; Karydas, C.; Tseni, X.; Mourelatos, S. Representation Learning with a Variational Autoencoder for Predicting Nitrogen Requirement in Rice. Remote Sens. 2022, 14, 5978. [Google Scholar] [CrossRef]
- Jallas, E. Improved Model-Based Decision Support by Modeling Cotton Variability and Using Evolutionary Algorithms. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 1998. [Google Scholar]
- Lemmon, H. Comax: An Expert System for Cotton Crop Management. Comput. Sci. Econ. Manag. 1990, 3, 177–185. [Google Scholar] [CrossRef]
- Hodges, H.F.; Whisler, F.D.; Bridges, S.M.; Reddy, K.R.; McKinion, J.M. Simulation in Crop Management: GOSSYM/COMAX. In Agricultural Systems Modeting and Simulation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Whisler, F.D.; Acock, B.; Baker, D.N.; Fye, R.E.; Hodges, H.F.; Lambert, J.R.; Lemmon, H.E.; McKinion, J.M.; Reddy, V.R. Crop Simulation Models in Agronomic Systems. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1986; Volume 40, pp. 141–208. ISBN 0065-2113. [Google Scholar]
- Baker, D.N.; Lambert, J.R.; McKinion, J.M. GOSSYM: A Simulator of Cotton Crop Growth and Yield; Technical bulletin (South Carolina Agricultural Experiment Station); S.C. Agricultural Experiment Station: Clemson, SC, USA, 1983. [Google Scholar]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sens. 2019, 11, 1745. [Google Scholar] [CrossRef]
- Reddy, K.R.; Reddy, V.R. Cotton Phenology and Growth Processes: Model Development. In Proceedings of the World Cotton Research Conference 2: New Frontiers in Cotton Research, Athens, Greece, 6–12 September 1998; Gillham, F., Ed.; Petridis: Thessaloniki, Greece, 1998; pp. 526–529. [Google Scholar]
- Jeong, J.; Resop, J.; Mueller, N.; Fleisher, D.; Yun, K.; Butler, E.; Timlin, D.; Shim, K.-M.; Gerber, J.; Reddy, V.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Ko, J.; Shin, T.; Kang, J.; Baek, J.; Sang, W.-G. Combining Machine Learning and Remote Sensing-Integrated Crop Modeling for Rice and Soybean Crop Simulation. Front. Plant Sci. 2024, 15, 1320969. [Google Scholar] [CrossRef]
- Viana, C.M.; Santos, M.; Freire, D.; Abrantes, P.; Rocha, J. Evaluation of the Factors Explaining the Use of Agricultural Land: A Machine Learning and Model-Agnostic Approach. Ecol. Indic. 2021, 131, 108200. [Google Scholar] [CrossRef]
- Borgnis, F.; Pedroli, E. Technological Interventions for Obsessive–Compulsive Disorder Management. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 978-0-12-809324-5. [Google Scholar]
- Zhang, J.; Petersen, S.D.; Radivojevic, T.; Ramirez, A.; Pérez-Manríquez, A.; Abeliuk, E.; Sánchez, B.J.; Costello, Z.; Chen, Y.; Fero, M.J.; et al. Combining Mechanistic and Machine Learning Models for Predictive Engineering and Optimization of Tryptophan Metabolism. Nat. Commun. 2020, 11, 4880. [Google Scholar] [CrossRef] [PubMed]
- MINAGRIC Aξιολόγηση Προγράμματος Γεωργικών Προειδοποιήσεων Oλοκληρωμένης Φυτοπροστασίας Στην Καλλιέργεια Βάμβακος Στην ΠΕ Δράμας, Για Το Έτος. 2023. Available online: https://www.minagric.gr/images/stories/docs/agrotis/BAMBAKI/Georgikes_Proeidop/bambaki_georgikes_proid2023/Drama-23.pdf#page=1.14 (accessed on 28 March 2025).
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; Taylor & Francis: Abingdon, UK, 2001; ISBN 9780849302060. [Google Scholar]
- Magdoff, F.R.; Jokela, W.E.; Fox, R.H.; Griffin, G.F. A Soil Test for Nitrogen Availability in the Northeastern United States. Commun. Soil Sci. Plant Anal. 1990, 21, 1103–1115. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; International Soil Reference and Information Centre (ISRIC): Wageningen, The Netherlands; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2002. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Iatrou, M.; Papadopoulos, A.; Papadopoulos, F.; Dichala, O.; Psoma, P.; Bountla, A. Determination of Soil Available Phosphorus Using the Olsen and Mehlich 3 Methods for Greek Soils Having Variable Amounts of Calcium Carbonate. Commun. Soil Sci. Plant Anal. 2014, 45, 2207–2214. [Google Scholar] [CrossRef]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, Sodium, and Potassium. In Methods of Soil Analysis; Agronomy Monographs; American Society of Agronomy, Inc.: Madison, WI, USA; Oil Science Society of America, Inc.: Madison, WI, USA, 1983; pp. 225–246. ISBN 9780891189770. [Google Scholar]
- Iatrou, M.; Papadopoulos, A.; Papadopoulos, F.; Dichala, O.; Psoma, P.; Bountla, A. Determination of Soil-Available Micronutrients Using the DTPA and Mehlich 3 Methods for Greek Soils Having Variable Amounts of Calcium Carbonate. Commun. Soil Sci. Plant Anal. 2015, 46, 1905–1912. [Google Scholar] [CrossRef]
- Jeffrey, A.J.; McCallum, L.E. Investigation of a Hot 0.01m CaCl2 Soil Boron Extraction Procedure Followed by ICP-AES Analysis. Commun. Soil Sci. Plant Anal. 1988, 19, 663–673. [Google Scholar] [CrossRef]
- Babashli, B.; Badalova, A.; Shukurov, R.; Ahmadov, A. Cotton Yield Estimation Using Several Vegetation Indices. Turk. J. Eng. 2024, 8, 139–151. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Liu, Q.; Lin, S.; Huete, A.; Liu, L.; Croft, H.; Clevers, J.G.P.W.; Zeng, Y.; Wang, X.; et al. A Novel Red-Edge Spectral Index for Retrieving the Leaf Chlorophyll Content. Methods Ecol. Evol. 2022, 13, 2771–2787. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant Litter and Soil Reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Κουκουλάκης, Π.; Παπαδόπουλος, A. H Ερμηνεία Της Aνάλυσης Του Εδάφους; Σταμούλης: Athens, Greece, 2001. [Google Scholar]
- Iqbal, B.; Kong, F.; Ullah, I.; Ali, S.; Li, H.; Wang, J.; Khattak, W.A.; Zhou, Z. Phosphorus Application Improves the Cotton Yield by Enhancing Reproductive Organ Biomass and Nutrient Accumulation in Two Cotton Cultivars with Different Phosphorus Sensitivity. Agronomy 2020, 10, 153. [Google Scholar] [CrossRef]
- Johnston, A.E. Soil and Plant Phosphate; International Fertilizer Industry Association: Paris, France, 2000. [Google Scholar]
- Lemaire, G.; Gastal, F. Uptake and Distribution in Plant Canopies. In Diagnosis of the Nitrogen Status in Crops; Lemaire, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 3–43. ISBN 978-3-642-60684-7. [Google Scholar]
- Greenwood, D.J.; Gastal, F.; Lemaire, G.; Draycott, A.P.; Millard, P.; Neeteson, J.J. Growth Rate and % N of Field Grown Crops: Theory and Experiments. Ann. Bot. 1991, 67, 181–190. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Horie, T. Leaf Nitrogen, Photosynthesis, and Crop Radiation Use Efficiency: A Review. Crop Sci. 1989, 29, 90–98. [Google Scholar] [CrossRef]
- Gastal, F.; Bélanger, G. The Effects of Nitrogen Fertilization and the Growing Season on Photosynthesis of Field-Grown Tall Fescue (Festuca arundinacea Schreb.) Canopies. Ann. Bot. 1993, 72, 401–408. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef]
- Yruela, I. Copper in Plants: Acquisition, Transport and Interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita; Fujita, M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Thomas, G.W.; Hipp, B.W. Soil Factors Affecting Potassium Availability. In The Role of Potassium in Agriculture; ASA, CSSA, and SSSA Books; American Society of Agronomy, Inc.: Madison, WI, USA, 1968; pp. 269–291. ISBN 9780891182504. [Google Scholar]
- Ahmed, N.; Zhang, B.; Bozdar, B.; Chachar, S.; Meghwar, M.; Li, J.; Li, Y.; Hayat, F.; Chachar, Z.; Tu, P. The Power of Magnesium: Unlocking the Potential for Increased Yield, Quality, and Stress Tolerance of Horticultural Crops. Front. Plant Sci. 2023, 14, 1285512. [Google Scholar] [CrossRef]
- Heald, W.R. Calcium and Magnesium. In Methods of Soil Analysis; Agronomy Monographs; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; pp. 999–1010. ISBN 9780891182047. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Day, S.; Aasim, M. Role of Boron in Growth and Development of Plant: Deficiency and Toxicity Perspective. In Plant Micronutrients: Deficiency and Toxicity Management; Aftab, T., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 435–453. ISBN 978-3-030-49856-6. [Google Scholar]
- Wear, J.I.; Patterson, R.M. Effect of Soil PH and Texture on the Availability of Water-Soluble Boron in the Soil. Soil Sci. Soc. Am. J. 1962, 26, 344–346. [Google Scholar] [CrossRef]
- Shwartz-Ziv, R.; Armon, A. Tabular Data: Deep Learning Is Not All You Need. Inf. Fusion 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Varoquaux, G.; Buitinck, L.; Louppe, G.; Grisel, O.; Pedregosa, F.; Mueller, A. Scikit-Learn: Machine Learning Without Learning the Machinery. GetMobile Mob. Comput. Commun. 2015, 19, 29–33. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Minin, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
- Gramegna, A.; Giudici, P. SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk. Front. Artif. Intell. 2021, 4, 752558. [Google Scholar] [CrossRef]
- Lloyd, S. N-Person Games. Defense Tech. Inf. Cent. 1952, 295–314. [Google Scholar]
- Van Rossum, G.; Drake, F.L., Jr. Python Tutorial. History 2010, 42, 1–122. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Howard, J.; Gugger, S. Deep Learning for Coders with Fastai and PyTorch; O’Reilly Media: Sebastopol, ON, Canada, 2020. [Google Scholar]
- Alloway, B.J. Soil Factors Associated with Zinc Deficiency in Crops and Humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef]
- Iatrou, M.; Karydas, C.; Iatrou, G.; Pitsiorlas, I.; Aschonitis, V.; Raptis, I.; Mpetas, S.; Kravvas, K.; Mourelatos, S. Topdressing Nitrogen Demand Prediction in Rice Crop Using Machine Learning Systems. Agriculture 2021, 11, 312. [Google Scholar] [CrossRef]
- Sun, M.; Li, P.; Wang, N.; Zheng, C.; Sun, X.; Dong, H.; Han, H.; Feng, W.; Shao, J.; Zhang, Y. Soil Available Phosphorus Deficiency Reduces Boll Biomass and Lint Yield by Affecting Sucrose Metabolism in Cotton-Boll Subtending Leaves. Agronomy 2022, 12, 1065. [Google Scholar] [CrossRef]
Hyperparameter | RF | XGBoost | LightGBM |
---|---|---|---|
n_estimators | 768 | 3563 | 1000 |
max_depth | 47 | 15 | 20 |
max_features | sqrt | - | - |
max_leaf_nodes | 257 | - | - |
bootstrap | False | - | - |
criterion | mae | - | - |
reg_lambda | - | 4.75 | 0.70 |
reg_alpha | - | 0.002 | 0.46 |
colsample_bytree | - | 0.9 | 0.6 |
subsample | - | 0.6 | 1.0 |
learning_rate | - | 0.04 | 0.02 |
min_child_weight | - | 2 | - |
num_leaves | - | - | 319 |
min_child_samples | - | - | 4 |
min_data_per_group | - | - | 63 |
metric | - | - | mae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iatrou, M.; Tziachris, P.; Bilias, F.; Kekelis, P.; Pavlakis, C.; Theofilidou, A.; Papadopoulos, I.; Strouthopoulos, G.; Giannopoulos, G.; Arampatzis, D.; et al. Data-Driven and Mechanistic Soil Modeling for Precision Fertilization Management in Cotton. Nitrogen 2025, 6, 29. https://doi.org/10.3390/nitrogen6020029
Iatrou M, Tziachris P, Bilias F, Kekelis P, Pavlakis C, Theofilidou A, Papadopoulos I, Strouthopoulos G, Giannopoulos G, Arampatzis D, et al. Data-Driven and Mechanistic Soil Modeling for Precision Fertilization Management in Cotton. Nitrogen. 2025; 6(2):29. https://doi.org/10.3390/nitrogen6020029
Chicago/Turabian StyleIatrou, Miltiadis, Panagiotis Tziachris, Fotis Bilias, Panagiotis Kekelis, Christos Pavlakis, Aphrodite Theofilidou, Ioannis Papadopoulos, Georgios Strouthopoulos, Georgios Giannopoulos, Dimitrios Arampatzis, and et al. 2025. "Data-Driven and Mechanistic Soil Modeling for Precision Fertilization Management in Cotton" Nitrogen 6, no. 2: 29. https://doi.org/10.3390/nitrogen6020029
APA StyleIatrou, M., Tziachris, P., Bilias, F., Kekelis, P., Pavlakis, C., Theofilidou, A., Papadopoulos, I., Strouthopoulos, G., Giannopoulos, G., Arampatzis, D., Vergos, E., Karydas, C., Beslemes, D., & Aschonitis, V. (2025). Data-Driven and Mechanistic Soil Modeling for Precision Fertilization Management in Cotton. Nitrogen, 6(2), 29. https://doi.org/10.3390/nitrogen6020029