Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Experimental Setup
2.2. Soil Sampling and Methods
2.3. Indices
2.4. Statistical Analysis
3. Results
3.1. Soil Measurements
3.2. Fertilization-Based Indicators
3.3. Plant-Based Indices
3.4. Soil-Based Indices
3.5. Ecology-Based Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zandi, P.; Basu, S.K.; Cetzal-Ix, W.; Kordrostami, M.; Chalaras, S.K.; Khatibai, L.B. Fenugreek (Trigonella foenum-graecum L.): An important medicinal and aromatic crop. In Active Ingredients from Aromatic and Medicinal Plants; InTechOpen: London, UK, 2017; pp. 207–224. [Google Scholar] [CrossRef]
- Basu, S.K.; Zandi, P.; Cetzal-Ix, W. Fenugreek (Trigonella foenum-graecum L.): Distribution, genetic diversity, and potential to serve as an industrial crop for the global pharmaceutical, nutraceutical, and functional food industries. In The Role of Functional Food Security in Global Health; Academic Press: Cambridge, MA, USA, 2019; pp. 471–497. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Magadlela, A.; Hong, S.; Cheng, Q. Fenugreek cultivation in the middle east and other parts of the world with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. In Fenugreek: Biology and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 13–30. [Google Scholar] [CrossRef]
- Rajagopala, S. Fenugreek: Traditional and Modern Medicinal Uses; Ghosh, D., Thakurdesai, P., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Singh, A.; Rai, J.; Mahajan, D.S. Comparative evaluation of glipizide and fenugreek (Trigonella foenum-graecum) seeds as monotherapy and combination therapy on glycaemic control and lipid profile in patients with type 2 diabetes mellitus. Int. J. Basic. Clin. Pharmacol. 2016, 5, 942–950. [Google Scholar] [CrossRef]
- Basu, T.K.; Srichamroen, A. Health Benefits of Fenugreek (Trigonella foenum-graecum leguminosse). In Bioactive Foods in Promoting Health; Academic Press: Cambridge, MA, USA, 2010; pp. 425–435. [Google Scholar] [CrossRef]
- Tewari, A.; Singh, R.; Brar, J.K. Pharmacological and Therapeutic Properties of Fenugreek (Trigonella foenum-graecum) Seed: A Review. J. Phytopharm. 2024, 13, 97–104. [Google Scholar] [CrossRef]
- Verma, P.P.; Nayyer, M.A.; Singh, S.; Kumar, D.; Siddiqui, S. Genetic diversity and distribution of fenugreek (Trigonella foenum-graecum Linn): A review. Pharma Innov. Int. J. 2023, 12, 1342–1352. [Google Scholar]
- Alemu, A.W.; Doepel, L. Fenugreek (Trigonella foenum-graecum L.) as an alternative forage for dairy cows. Animal 2011, 5, 1370–1381. [Google Scholar] [CrossRef]
- Acharya, S.N.; Thomas, J.E.; Basu, S.K. Fenugreek, an alternative crop for semiarid regions of North America. Crop Sci. 2008, 48, 841–853. [Google Scholar] [CrossRef]
- Niknam, R.; Kiani, H.; Mousavi, Z.E.; Mousavi, M. Extraction, detection, and characterization of various chemical components of Trigonella foenum-graecum L.(fenugreek) known as a valuable seed in agriculture. In Fenugreek: Biology and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 189–217. [Google Scholar] [CrossRef]
- Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Edberg, K. Farming without Animals? Ph.D. Thesis, Lund University, Lund, Swedish, 2023. [Google Scholar]
- Anders, A.; Eisenbach, J. Biocyclic-vegan agriculture. Grow. Green Int. 2017, 39, 32–34. [Google Scholar]
- Jürkenbeck, K.; Schleicher, L.; Meyerding, S.G. Marketing potential for biocyclic-vegan-products? A qualitative, explorative study with experts and consumers. Ger. J. Agric. Econ. 2019, 68, 289–298. [Google Scholar] [CrossRef]
- Köninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J. Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agric. Syst. 2021, 194, 103251. [Google Scholar] [CrossRef]
- Espinosa-Marrón, A.; Adams, K.; Sinno, L.; Cantu-Aldana, A.; Tamez, M.; Marrero, A.; Bhupathiraju, S.N.; Mattei, J. Environmental impact of animal-based food production and the feasibility of a shift toward sustainable plant-based diets in the United States. Front. Sustain. 2022, 3, 841106. [Google Scholar] [CrossRef]
- Seymour, M. Expanding recognition and inclusion of animal-free organic agriculture in the sustainable agriculture movement. Front. Sustain. Food Syst. 2023, 7, 1293261. [Google Scholar] [CrossRef]
- Seymour, M.; Utter, A. Veganic farming in the United States: Farmer perceptions, motivations, and experiences. Agric. Hum. Values 2021, 38, 1139–1159. [Google Scholar] [CrossRef] [PubMed]
- Omara, P.; Aula, L.; Oyebiyi, F.; Raun, W.R. World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosystems Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Singh, P.; Raj, A.; Yadav, B. Impacts of agriculture-based contaminants on groundwater quality. In Sustainability of Water Resources; Springer: Cham, Switzerland, 2022; pp. 249–261. [Google Scholar] [CrossRef]
- European Commission Staff Working Document. Report on the Implementation of the Water Framework Directive River Basin Management Plans, Member State: GREECE, Brussels, 9.3.2015, SWD. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=SWD:2015:054:FIN (accessed on 11 June 2020).
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Power, J.F.; Doran, J.W. Nitrogen use in organic farming. In Nitrogen in Crop Production; American Society of Agronomy: Madison, WI, USA, 1984; pp. 585–598. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Letourneau, D.K.; Workneh, F.A.H.C.; Van Bruggen, A.H.C.; Shennan, C. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol. Appl. 1995, 5, 1098–1112. [Google Scholar] [CrossRef]
- Bilalis, D.J.; Karamanos, A.J. Organic maize growth and mycorrhizal root colonization response to tillage and organic fertilization. J. Sustain. Agric. 2010, 34, 836–849. [Google Scholar] [CrossRef]
- Kakabouki, I.; Efthimiadou, A.; Folina, A.; Zisi, C.; Karydogianni, S. Effect of different tomato pomace compost as organic fertilizer in sweet maize crop. Commun. Soil. Sci. Plant Anal. 2020, 51, 2858–2872. [Google Scholar] [CrossRef]
- Kundu, D.K.; Ladha, J.K. Enhancing soil nitrogen use and biological nitrogen fixation in wetland rice. Exp. Agric. 1995, 31, 261–278. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air andwater quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Ferguson, R.B.; Penas, E.J.; Shapiro, C.A.; Hergert, G.W. Fertilizer Nitrogen Best Management Practices; University of Nebraska-Lincoln Cooperative Extension Publication G94-1178-A; University of Nebraska-Lincoln: Lincoln, NE, USA, 1994. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Cormier, F.; Foulkes, J.; Hirel, B.; Gouache, D.; Moënne-Loccoz, Y.; Le Gouis, J. Breeding for increased nitrogen-use efficiency: A review for wheat (T. aestivum L.). Plant Breed. 2016, 135, 255–278. [Google Scholar] [CrossRef]
- Martinez-Feria, R.A.; Castellano, M.J.; Dietzel, R.N.; Helmers, M.J.; Liebman, M.; Huber, I.; Archontoulis, S.V. Linking crop-and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 2018, 256, 131–143. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Sources and fates of nitrogen in plants and the environment. Trends Plant Sci. 2004, 12, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency–measurement and management. In Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives Versus Regulations; International Fertilizer Industry Association: Paris, France, 2007. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Ernst, O.R.; Kemanian, A.R.; Mazzilli, S.; Siri-Prieto, G.; Dogliotti, S. The dos and don’ts of no-till continuous cropping: Evidence from wheat yield and nitrogen use efficiency. Field Crops Res. 2020, 257, 107934. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; International Fertilizer Industry Association (IFA): Paris, France; International Water Management Institute (IWMI): Paris, France; International Plant Nutrition Institute (IPNI): Paris, France; International Potash Institute (IPI): Paris, France, 2015; Volume 270, pp. 1–30. [Google Scholar]
- Folina, A.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Katsenios, N.; Efthimiadou, A.; Travlos, I.S.; Roussis, I.; Darawsheh, M.K.; Papastylianou, P.; et al. Evaluation of various nitrogen indices in N-fertilizers with inhibitors in field crops: A review. Agronomy 2021, 11, 418. [Google Scholar] [CrossRef]
- Erisman, J.W.; Leach, A.; Bleeker, A.; Atwell, B.; Cattaneo, L.; Galloway, J. An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production–consumption chain. Sustainability 2018, 10, 925. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- ISO 11261:1995; Soil Quality: Determination of Total Nitrogen: Modified Kjeldahl Method. International Organization for Standardization: Geneve, Switzerland, 1995.
- ISO 11260; Soil Quality: Determination of Cation Exchange Capacity and Base Saturation Method Using Barium Chloride Solution. International Organization for Standardization: Geneva, Switzerland, 1994.
- ISO 11265:1996; Soil Quality—Determination of the Specific Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1996.
- IPNI. Nutrient Performance Indicators: The Importance of Farm Scale Assessments, Linked to Soil Fertility, Productivity, Environmental Impact and the Adoption of Grower Best Management Practices. 2014. Available online: http://anz.ipni.net/ipniweb/region/anz.nsf/0/9312A2172A0B917CCA257E8E007219B4/$FILE/Issue%20Review%20Perf%20Ind%20081114.pdf (accessed on 11 June 2020).
- Novoa, R.; Loomis, R.S. Nitrogen and plant production. Plant Soil 1981, 58, 177–204. [Google Scholar] [CrossRef]
- Berendse, F.; Aerts, R. Nitrogen-use-efficiency: A biologically meaningful definition? Funct. Ecol. 1987, 1, 293–296. [Google Scholar]
- Lambers, H.; Oliveira, R.S.; Lambers, H.; Oliveira, R.S. Mineral nutrition. In Plant Physiological Ecology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 301–384. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Kozłowski, M.; Wąsowicz, J.; Pęczek, E.; Białowiec, A. Nitrogen Removal from Landfill Leachate Using Biochar Derived from Wheat Straw. Materials 2024, 17, 928. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Environmental soil chemistry: An overview. Environ. Soil Chem. 2003, 2, 1–42. [Google Scholar]
- Singh, M.S. Effect of Rhizobium, FYM and chemical fertilizers on legume crops and nutrient status of soil—A review. Agric. Rev. 2005, 26, 309–312. [Google Scholar]
- Jani, A.D.; Grossman, J.M.; Smyth, T.J.; Hu, S. Influence of soil inorganic nitrogen and root diameter size on legume cover crop root decomposition and nitrogen release. Plant Soil 2015, 393, 57–68. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil. Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Galantini, J.; Rosell, R. Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampean soils. Soil. Tillage Res. 2006, 87, 72–79. [Google Scholar] [CrossRef]
- Plaza, C.; Giannetta, B.; Fernández, J.M.; López-de-Sá, E.G.; Polo, A.; Gascó, G.; Méndez, A.; Zaccone, C. Response of different soil organic matter pools to biochar and organic fertilizers. Agric. Ecosyst. Environ. 2016, 225, 150–159. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P.; Asrade, D.A. The influence of organic and mineral fertilizers on the quality of soil organic matter and glomalin content. Agronomy 2022, 12, 1375. [Google Scholar] [CrossRef]
- Chen, Y.; Aviad, T. Effects of humic substances on plant growth. In Humic Substances in Soil and Crop Sciences: Selected Readings; American Society of Agronomy: Madison, WI, USA, 1990; pp. 161–186. [Google Scholar] [CrossRef]
- Oleńska, E.; Małek, W.; Wójcik, M.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 2020, 743, 140682. [Google Scholar] [CrossRef] [PubMed]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Yadav, R.L. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Res. 2003, 81, 39–51. [Google Scholar] [CrossRef]
- Shahzad, A.N.; Qureshi, M.K.; Wakeel, A.; Misselbrook, T. Crop production in Pakistan and low nitrogen use efficiencies. Nat. Sustain. 2019, 2, 1106–1114. [Google Scholar] [CrossRef]
- Kareem, A.A.; Ramasamy, C. Expanding Frontiers of Agriculture: Contemporary Issues; Kalyani Publishers: New Delhi, India, 2000. [Google Scholar]
- Salinas-Roco, S.; Morales-González, A.; Espinoza, S.; Pérez-Díaz, R.; Carrasco, B.; Del Pozo, A.; Cabeza, R.A. N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density. Plants 2024, 13, 991. [Google Scholar] [CrossRef]
- Pang, X.P.; Letey, J. Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef]
- Gaskell, M.; Smith, R. Nitrogen sources for organic vegetable crops. HortTechnology 2007, 17, 431–441. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Palmero, F.; Fernandez, J.A.; Garcia, F.O.; Haro, R.J.; Prasad, P.V.; Salvagiotti, F.; Ciampitti, I.A. A quantitative review into the contributions of biological nitrogen fixation to agricultural systems by grain legumes. Eur. J. Agron. 2022, 136, 126514. [Google Scholar] [CrossRef]
- Maaz, T.M.; Sapkota, T.B.; Eagle, A.J.; Kantar, M.B.; Bruulsema, T.W.; Majumdar, K. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Chang. Biol. 2021, 27, 2343–2360. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Ma, B.L.; Herath, A.W. Timing and rates of nitrogen fertiliser application on seed yield, quality and nitrogen-use efficiency of canola. Crop Pasture Sci. 2016, 67, 167–180. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, X.; Li, Y.; Liu, S.; Ji, J.; Tong, Y. Effects of mixed controlled release nitrogen fertilizer with rice straw biochar on rice yield and nitrogen balance in northeast China. Sci. Rep. 2020, 10, 9452. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Bilalis, D.; Karkanis, A.; Froud-Williams, B. Combined organic/inorganic fertilization enhance soil quality and increased yield, photosynthesis and sustainability of sweet maize crop. Aust. J. Crop Sci. 2010, 4, 722–729. [Google Scholar]
- Kakabouki, I.; Folina, A.; Charikleia, Z.I.S.I.; Karydogianni, S. Fertilization expression via nitrogen indices in soybean crop under two system tillage. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 799–813. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Haynes, R.J.R.J. Mineral Nitrogen in the Plant-Soil System; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Talaat, N.B.; Ghoniem, A.E.; Abdelhamid, M.T.; Shawky, B.T. Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul. 2015, 75, 281–295. [Google Scholar] [CrossRef]
- Singh, R.; Babu, S.; Avasthe, R.K.; Das, A.; Praharaj, C.S.; Layek, J.; Kumar, A.; Rathore, S.S.; Kancheti, M.; Kumar, S.; et al. Organic farming in North–East India: Status and strategies. Indian J. Agron. 2021, 66, 163–179. [Google Scholar]
- Fatemi, R.; Hoseini, S.M.B.; Moghadam, H.; Motesharezadeh, B.; Ahmadabadi, Z. How biofertilizers and intercropping pattern affect yield and nitrogen efficiency indices of maize? Arab. J. Geosci. 2023, 16, 378. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, S.R.K.; Kumar, N.; Singh, A.K. Maximization of nutrient use efficiency and yield through application of biofertilizers in field pea (Pisum sativum L.). Legume Res. 2023, 46, 1475–1482. [Google Scholar] [CrossRef]
- Ooro, P.A.; Birech, R.J.; Malinga, J.N.; Thuranira, E. Effect of legumes on nitrogen use efficiency of wheat in a short term crop rotation in njoro sub-county. J. Exp. Agric. Int. 2021, 43, 1–15. [Google Scholar] [CrossRef]
- Kakabouki, I.; Mavroeidis, A.; Tataridas, A.; Roussis, I.; Katsenios, N.; Efthimiadou, A.; Tigka, E.L.; Karydogianni, S.; Zisi, C.; Folina, A.; et al. Reintroducing flax (Linum usitatissimum L.) to the Mediterranean basin: The importance of nitrogen fertilization. Plants 2021, 10, 1758. [Google Scholar] [CrossRef]
- Lemaire, G.; Ciampitti, I. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: A review. Plants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Escuer-Gatius, J.; Lõhmus, K.; Shanskiy, M.; Kauer, K.; Vahter, H.; Mander, Ü.; Astover, A.; Soosaar, K. Critical points for closing the carbon and nitrogen budgets in a winter rapeseed field. Nutr. Cycl. Agroecosystems 2022, 122, 289–311. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ngullie, E. Integrated nutrient management: Theory and practice. Dyn. Soil Dyn. Plant 2009, 3, 1–30. [Google Scholar]
- Sivojiene, D.; Kacergius, A.; Baksiene, E.; Maseviciene, A.; Zickiene, L. The influence of organic fertilizers on the abundance of soil microorganism communities, agrochemical indicators, and yield in East Lithuanian light soils. Plants 2021, 10, 2648. [Google Scholar] [CrossRef] [PubMed]
- Tarfeen, N.; Hassan, S.; Manzoor, A.; Sultan, Z. Integrated nutrient management strategies for improving crop yield. In Sustainable Plant Nutrition; Academic Press: Cambridge, MA, USA, 2023; pp. 283–297. [Google Scholar] [CrossRef]
- Akter, Z.; Lupwayi, N.Z.; Balasubramanian, P.M. Nitrogen use efficiency of irrigated dry bean (Phaseolus vulgaris L.) genotypes in southern Alberta. Can. J. Plant Sci. 2017, 97, 610–619. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; Míguez-Montero, Á.; Valentine, A. Phosphorus and nitrogen modulate plant performance in shrubby legumes from the Iberian Peninsula. Plants 2019, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Bastida, F.; Kandeler, E.; Moreno, J.L.; Ros, M.; García, C.; Hernández, T. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 2008, 40, 318–329. [Google Scholar] [CrossRef]
- Pinchuk, V.; Symochko, L.; Palapa, N.; Ustymenko, O.; Kichigina, O.; Demyanyuk, O. Agroecological soil status in agroecosystems with monoculture. Int. J. Ecosyst. Ecol. Sci. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Biswas, T.; Kole, S.C. Soil organic matter and microbial role in plant productivity and soil fertility. In Advances in Soil Microbiology: Recent Trends and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2, pp. 219–238. [Google Scholar]
- Yang, X.; Zhang, C.; Ma, X.; Liu, Q.; An, J.; Xu, S.; Xie, X.; Geng, J. Combining organic fertilizer with controlled-release urea to reduce nitrogen leaching and promote wheat yields. Front. Plant Sci. 2021, 12, 802137. [Google Scholar] [CrossRef]
Index Name | Short Name | Formula | Reference | No. |
---|---|---|---|---|
Fertilization-based indicators | ||||
Partial-factor Seed Productivity | PFPseed | [38] | (1) | |
Partial-factor Biomass Productivity | PFPbiomass | [38] | (2) | |
N Balance Intensity | NBI | [48] | (3) | |
NUEcrop | [35] | (4) | ||
Partial N Balance | PNB | [38] | (5) | |
Agr. Efficiency | AE | [38] | (6) | |
Fertilizer-N = Recovery Efficiency | REfertN | [38] | (7) | |
Plant-based indices | ||||
Physiol. Efficiency | PE | [38] | (8) | |
N Utiliz. Efficiency | NUtE | [31] | (9) | |
Internal Efficiency | IE | [38] | (10) | |
N Harvest Index | NHI | [31] | (11) | |
NUEsoil | [31] | (12) | ||
Soil-based indices | ||||
N Uptake Efficiency | NUpE | [31] | (13) | |
NUEyield | [49] | (14) | ||
NUEbalance | [35] | (15) | ||
Ecology-based indices | ||||
Nitrogen Productivity | NP | [50] | (16) | |
NUEecology | [51] | (17) |
STN (mg g−1) | CEC (cmol kg−1) | SOM (%) | ||
---|---|---|---|---|
CPI | ||||
Fertilization | BHS | 2.42 a | 19.83 a | 3.77 a |
COMP | 1.82 b | 16.83 c | 3.40 a | |
C | 0.99 c | 15.33 d | 2.37 b | |
FYM | 2.14 ab | 18.17 b | 3.50 a | |
NPK | 1.96 b | 17.50 bc | 2.43 b | |
Salinity | CS | 1.96 a | 17.80 a | 3.19 a |
HS | 1.77 a | 17.27 a | 3.14 a | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | ns |
Fertilization | 4 | 40.45 *** | 33.07 *** | 26.81 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
CP II | ||||
Fertilization | BHS | 2.45 a | 20.00 a | 3.82 a |
COMP | 1.74 c | 18.67 b | 3.42 b | |
C | 1.14 d | 15.67 d | 2.32 c | |
FYM | 2.25 b | 18.33 b | 3.52 b | |
NPK | 2.08 b | 17.33 c | 2.40 c | |
Salinity | CS | 2.03 a | 18.27 a | 3.23 a |
HS | 1.83 a | 17.73 a | 2.95 a | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | ns |
Fertilization | 4 | 131.71 *** | 53.71 *** | 161.31 *** |
Fertilization x Salinity | 4 | 6.35 ** | ns | ns |
CP III | ||||
Fertilization | BHS | 2.55 a | 19.83 a | 3.97 a |
COMP | 2.11 c | 18.33 b | 3.54 b | |
C | 1.27 d | 15.67 d | 2.19 c | |
FYM | 2.35 ab | 18.33 b | 3.64 b | |
NPK | 2.17 bc | 17.33 c | 2.40 c | |
Salinity | CS | 2.23 a | 18.27 a | 3.28 a |
HS | 1.96 a | 17.53 a | 3.01 a | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | ns |
Fertilization | 4 | 96.51 *** | 51.39 *** | 195.46 *** |
Fertilization x Salinity | 4 | 3.10 * | ns | ns |
Error | 16 | |||
Total | 29 |
PFPseed | PFPbiomass | NBI | NUEcrop | PNB | AE | REfertN | ||
---|---|---|---|---|---|---|---|---|
CPI | ||||||||
Fertilization | BHS | 12.44 c | 42.26 a | −32.12 ab | 0.71 ab | 0.28 a | 4.03 c | 0.14 a |
COMP | 12.76 bc | 37.24 b | −39.52 b | 0.64 b | 0.22 b | 4.35 bc | 0.08 b | |
C | ||||||||
FYM | 14.95 a | 42.62 a | −19.04 a | 0.83 a | 0.26 a | 6.54 a | 0.13 a | |
NPK | 14.47 ab | 42.75 a | −25.48 a | 0.77 a | 0.26 a | 6.05 ab | 0.12 a | |
Salinity | CS | 14.48 a | 42.07 a | −21.227 a | 0.81 a | 0.26 a | 5.80 a | 0.10 b |
HS | 12.83 a | 40.37 a | −36.86 b | 0.66 b | 0.24 a | 4.70 a | 0.14 a | |
ANOVA | Df | F | F | F | F | F | F | F |
Salinity | 1 | ns | ns | 13.28 *** | 13.28 *** | ns | ns | 3.49 ** |
Fertilization | 4 | 6.71 ** | 26.74 *** | 49.00 ** | 49.20 ** | ns | 6.71 ** | 23.83 ** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns | ns | ns |
CP II | ||||||||
Fertilization | BHS | 15.65 a | 41.53 a | 11.62 ab | 0.90 a | 0.28 a | 5.03 a | 0.15 a |
COMP | 15.91 a | 34.43 c | −24.862 b | 0.82 a | 0.20 c | 5.30 a | 0.07 d | |
C | ||||||||
FYM | 18.30 a | 40.85 ab | 2.36 a | 1.03 a | 0.26 ab | 7.69 a | 0.14 b | |
NPK | 16.97 a | 39.49 b | −9.219 ab | 0.92 a | 0.24 b | 6.35 a | 0.11 c | |
Salinity | CS | 18.91 a | 40.39 a | −4.983 a | 1.05 a | 0.26 a | 7.64 a | 0.13 a |
HS | 14.51 b | 37.76 a | −5.062 a | 0.79 b | 0.23 a | 4.54 b | 0.09 a | |
ANOVA | Df | |||||||
Salinity | 1 | 15.62 ** | ns | ns | 16.91 *** | ns | ns | ns |
Fertilization | 4 | ns | 97.48 *** | ns | ns | 3.54 * | ns | 50.72 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns | ns | ns |
CP III | ||||||||
Fertilization | BHS | 19.11 a | 42.28 a | 11.15 a | 1.02 a | 0.29 a | 7.28 a | 0.16 a |
COMP | 15.05 c | 33.36 d | −10.65 c | 0.77 a | 0.19 c | 3.23 c | 0.07 d | |
C | ||||||||
FYM | 18.13 ab | 39.98 b | 8.22 ab | 0.92 a | 0.26 ab | 6.31 ab | 0.13 b | |
NPK | 16.48 bc | 37.92 c | −10.46 b | 1.11 a | 0.23 b | 4.67 bc | 0.09 c | |
Salinity | CS | 17.03 a | 38.96 a | −4.87 a | 0.95 a | 0.24 a | 5.62 a | 0.13 a |
HS | 17.36 a | 37.82 b | −5.60 a | 0.95 a | 0.21 a | 5.12 a | 0.09 b | |
ANOVA | Df | |||||||
Salinity | 1 | ns | 26.85 * | ns | ns | ns | ns | 7.87 * |
Fertilization | 4 | 15.43 *** | 67.94 *** | 77 *** | ns | 72.23 *** | 15.43 *** | 50.72 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns | ns | ns |
Error | 16 | |||||||
Total | 29 |
PE | NUtE | IE | NHI | NUEsoil | ||
---|---|---|---|---|---|---|
CPI | ||||||
Fertilization | BHS | 28.77 b | 45.67 a | 2.59 ab | 259.23 ab | 10.08 ab |
COMP | 59.15 a | 60.44 a | 3.02 ab | 302.38 ab | 8.93 b | |
C | 64.17 a | 2.38 b | 238.89 b | 7.32 c | ||
FYM | 53.47 ab | 57.85 a | 3.18 a | 318.91 a | 10.19 a | |
NPK | 52.00 ab | 57.40 a | 3.05 a | 304.96 a | 10.24 a | |
Salinity | CS | 44.94 a | 59.13 a | 3.03 a | 302.91 a | 9.54 a |
HS | 51.78 a | 55.08 a | 2.66 a | 266.84 a | 9.17 a | |
ANOVA | Df | F | F | F | F | F |
Salinity | 1 | ns | ns | ns | ns | ns |
Fertilization | 4 | 4.18 * | ns | 5.05 ** | 5.05 ** | 19.45 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns |
CP II | ||||||
Fertilization | BHS | 34.64 b | 57.27 a | 3.30 bc | 330.21 bc | 9.91 a |
COMP | 77.77 a | 80.98 a | 4.16 a | 416.21 a | 8.27 b | |
C | 82.52 a | 3.14 c | 314.81 c | 6.88 c | ||
FYM | 58.93 ab | 70.63 a | 3.94 abc | 394.29 abc | 9.76 a | |
NPK | 61.11 ab | 73.11 a | 4.05 ab | 405.86 ab | 9.45 a | |
Salinity | CS | 65.26 a | 76.30 a | 3.94 a | 393.92 a | 8.83 a |
HS | 50.97 a | 69.51 a | 3.51 a | 350.64 a | 8.88 a | |
ANOVA | Df | F | F | |||
Salinity | 1 | ns | ns | ns | ns | ns |
Fertilization | 4 | 7.26 ** | ns | 5.91 ** | 5.91 ** | 36.14 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns |
CP III | ||||||
Fertilization | BHS | 47.91 a | 97.84 a | 3.93 ab | 392.70 ab | 9.91 a |
COMP | 60.17 a | 79.50 a | 4.08 a | 408.09 a | 8.27 c | |
C | 91.24 a | 3.46 b | 346.49 b | 6.88 c | ||
FYM | 50.73 a | 70.83 a | 3.99 ab | 399.12 ab | 9.76 ab | |
NPK | 50.46 a | 74.01 a | 4.12 a | 411.75 a | 9.45 b | |
Salinity | CS | 45.57 a | 69.31 a | 3.58 a | 358.57 a | 8.83 a |
HS | 59.07 a | 84.06 a | 4.25 a | 424.69 a | 8.88 a | |
ANOVA | Df | F | F | |||
Salinity | 1 | ns | ns | ns | ns | ns |
Fertilization | 4 | ns | ns | 3.56 * | 3.56 * | 43.59 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns |
Error | 16 | |||||
Total | 29 |
NUpE | NUEyield | NUEbalance | ||
---|---|---|---|---|
CPI | ||||
Fertilization | BHS | 27.08 a | 72.74 a | 0.92 a |
COMP | 21.15 b | 81.59 a | 0.80 b | |
C | 13.22 c | 77.38 a | ||
FYM | 25.83 ab | 83.68 a | 1.02 a | |
NPK | 25.15 ab | 82.55 a | 0.96 a | |
Salinity | CS | 23.25 a | 82.38 a | 1.00 a |
HS | 21.71 a | 76.79 a | 0.85 b | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | 42.54 * |
Fertilization | 4 | 70.38 *** | ns | 95.61 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
CP II | ||||
Fertilization | BHS | 27.25 a | 84.79 a | 1.11 a |
COMP | 19.75 c | 100.73 a | 0.95 b | |
C | 12.79 d | 95.31 a | ||
FYM | 25.95 ab | 96.58 a | 1.20 a | |
NPK | 23.21 b | 96.61 a | 1.10 a | |
Salinity | CS | 23.43 a | 99.73 a | 1.09 a |
HS | 20.38 a | 89.89 a | 0.85 b | |
ANOVA | Df | |||
Salinity | 1 | ns | ns | 40.27 * |
Fertilization | 4 | 68.55 *** | ns | 92.35 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
CP III | ||||
Fertilization | BHS | 28.05 a | 95.89 a | 1.30 a |
COMP | 19.18 c | 98.68 c | 0.90 c | |
C | 12.96 d | 104.20 d | ||
FYM | 25.51 ab | 96.33 ab | 1.19 ab | |
NPK | 22.58 b | 96.59 b | 1.06 b | |
Salinity | CS | 23.38 a | 92.69 a | 1.02 a |
HS | 19.93 a | 103.99 a | 0.98 b | |
ANOVA | Df | |||
Salinity | 1 | ns | ns | 55.20 * |
Fertilization | 4 | 59.66 *** | ns | 95.57 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
Error | 16 | |||
Total | 29 |
NP | NUEecology | ||
---|---|---|---|
CPI | |||
Fertilization | BHS | 2.92 b | 526.96 b |
COMP | 3.32 b | 597.87 b | |
C | 4.45 a | 801.97 a | |
FYM | 3.09 b | 556.68 b | |
NPK | 3.17 b | 572.27 b | |
Salinity | CS | 3.50 a | 630.47 a |
HS | 3.28 a | 591.83 a | |
ANOVA | Df | F | F |
Salinity | 1 | ns | ns |
Fertilization | 4 | 8.57 *** | 8.57 * |
Fertilization x Salinity | 4 | ns | ns |
CP II | |||
Fertilization | BHS | 2.87 b | 516.98 b |
COMP | 3.30 b | 594.77 b | |
C | 4.23 a | 760.75 a | |
FYM | 2.97 b | 534.97 b | |
NPK | 3.22 b | 580.00 b | |
Salinity | CS | 3.29 a | 593.03 a |
HS | 3.34 a | 601.96 a | |
ANOVA | Df | ||
Salinity | 1 | ns | ns |
Fertilization | 4 | 14.96 *** | 14.96 *** |
Fertilization x Salinity | 4 | ns | ns |
CP III | |||
Fertilization | BHS | 2.86 b | 515.54 b |
COMP | 3.32 b | 597.90 b | |
C | 4.18 a | 752.93 a | |
FYM | 2.97 b | 535.34 b | |
NPK | 3.21 b | 578.48 b | |
Salinity | CS | 3.10 a | 558.02 a |
HS | 3.52 a | 634.06 a | |
ANOVA | Df | ||
Salinity | 1 | ns | ns |
Fertilization | 4 | 23.27 *** | 23.27 *** |
Fertilization x Salinity | 4 | ns | ns |
Error | 16 | ||
Total | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folina, A.; Mavroeidis, A.; Stavropoulos, P.; Eisenbach, L.; Kakabouki, I.; Bilalis, D. Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators. Nitrogen 2024, 5, 712-731. https://doi.org/10.3390/nitrogen5030047
Folina A, Mavroeidis A, Stavropoulos P, Eisenbach L, Kakabouki I, Bilalis D. Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators. Nitrogen. 2024; 5(3):712-731. https://doi.org/10.3390/nitrogen5030047
Chicago/Turabian StyleFolina, Antigolena, Antonios Mavroeidis, Panteleimon Stavropoulos, Lydia Eisenbach, Ioanna Kakabouki, and Dimitrios Bilalis. 2024. "Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators" Nitrogen 5, no. 3: 712-731. https://doi.org/10.3390/nitrogen5030047
APA StyleFolina, A., Mavroeidis, A., Stavropoulos, P., Eisenbach, L., Kakabouki, I., & Bilalis, D. (2024). Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators. Nitrogen, 5(3), 712-731. https://doi.org/10.3390/nitrogen5030047